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ABSTRACT: Instream flow standards are not clearly defined in laws of most
western states. An instream flow standard should imply a formula that would
incorporate biological and hydrological information to assign a range of in-
stream Hows for a stream. Ambiguity in instream flow standards has led to
unresolved controversy over water allocation in Washington. A clear instream
fiow policy would reduce costly delays in water resource planning. Five elements
to an unambiguous instream flow standard are identified: goal, resources to be
considered, unit of measurement, benchmark time period, and protection sta-
tistic. Future water management options and instream resource levels are influ-
enced by choices pertaining to.each of these elements. An instream flow standard
for fish habitat protection is proposed as an example. If the standards recom-
mended were implemented, future water appropriation would be restricted to
large, high-gradient rivers.

KEY WORDS: Policy, streamflow standards, water allocation, water resource

planning.

T here is a dilemma in state instream
— flow programs. Many states have es-
tablished programs dealing with instream
uses of water, but few have achieved a con-
sensus on what these programs are sup-
posed to achieve. One solution to this
problem is clear standards. At a minimum,
the statutory language of a program should
offer a clear, measurable goal. Instream flow
programs that fail to meet this criterion
will increase controversy and achieve
vague results.

Although 15 states have laws that allow
establishment and protection of instream
flows (McKinney and Taylor 1988; Reiser
et al. 1989), standards for instream flows
are vaguely defined in law. If clearly de-
fined, an instream flow standard would
serve as a formula to prescribe, within rel-
atively narrow limits, instream flows to be
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set in a given stream reach once specific
information about the stream reach is con-
sidered in the formula. An instream flow
standard should (1) define the goal of the
instream use of water, (2) state the extent
to which the goal is to be achieved, and
(3) identify criteria for evaluating the
achievement.

In several states (e.g., Colorado, Idaho,
Kansas, Montana, Nebraska, Oregon,
Washington, and Wyoming), the term
“minimum’ is associated with instream
flows (McKinney and Taylor 1988). Spe-
cific hydrologic upper limits are placed
upon instream flows in Oregon and Alas-
ka. Oregon law specifies optimum levels
for management of fish habitat, thus in-
directly for instream flows for fish (Ore.
Rev. Stat. 496.012, 496.435, and 306.109).
Oregon’s 1955 instream flow statute (Ore.
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FIGURE 1. Salmonid densities in Washington
streams are greatest in small streams with moderate
gradient and least in large, steep streams.

Rev. Stat. 536.235) was for minimum flows,
but a 1987 instream water rights law (Ore.
Rev. Stat. 537), administered as incorpo-
rating minimum flows set under the earlier
statute, recognizes broad instream uses but
has no clear standards.

Increasing competition for finite water
supplies has made establishment of in-
stream flow protection a prolonged con-
troversy (McKinney and Taylor 1988;
Shupe and Sherk 1988), except in Alaska,
where out-of-stream use has made few in-
roads into water supply (White 1982). For
example, a Washington state program to
establish instream flows stalled in 1985 as
development and environmental interests
clashed over the quantity of water to be
reserved for instream uses. Each side’s ar-
guments were based on its interpretation
of state water law and the instream flow
standards perceived therein. The resulting
review of the program included a year of
inconclusive negotiations among members
of a multi-interest Instream Flow and Water
Allocation Advisory Committee. The De-
partment of Ecology (Ecology), which ad-
ministers water rights and instream flows,
proposed optimum flows for fish as a stan-
dard. Challenges to that proposal led to
creation of the state legislature’s Joint Se-
lect Committee on Water Resource Policy
in 1988 (Shupe and Sherk 1988; Joint Select
Committee on Water Resource Policy 1989).
Washington’s experience has been costly
in terms of effort, uncertainty, and delays.
As of fall 1989, no resolution had been
achieved.

Standards for instream flows are one key

to resolving this dilemma. As long as they
remain ambiguous, standards will be easily
challenged. Attacking administrative stan-
dards can be a profitable exercise for any-

one needing more water. As unallocated
water decreases in availability, the chal-
lenges and counter-chailenges are more
likely to involve all available administra-
tive, legal, and legislative processes. Stan-
dards that are unambiguously defined will
greatly reduce delays and uncertainty, and
minimize costs.

The Washington State Legislature has
written three different statutes that allow
establishment of instream flows (Rev. Code
Wash. 75.20.050, Rev. Code Wash. chapter
90.22, and Rev. Code Wash. chapter 90.54).
The oldest of these statutes (Rev. Code
Wash. 75.20.050), first passed in 1949, de-
clares “the policy of this state that a flow
of water sufficient to support game fish and
food fish populations be maintained at all
times in the streams of this state.”” The cri-
terion for refusing to issue a permit is the
opinion of the Director of Game or Direc-
tor of Fisheries that granting a water right
would reduce flow to a level no longer
sufficient to sustain fish populations. Ecoi-
ogy can place conditions, including min-
imum flows, on water rights, rather than
deny applications. Under these laws, set-
ting of minimum instream flows has been
a negotiation process, which has become
bogged down because of uncertainty over
standards (Shupe and Sherk 1988).

Minimum flows (independent of a water
right application) mav be establiished in
Washington to protect instream values,
primarily fish and wildlife, at the request
of the director of either the Department of
wildlife (WDW, formerly Department of
Game) or the Department of Fisheries
(WDF), according to Rev. Code Wash. 90.22.
The legislature also mandated a program
to establish base flows (Rev. Code Wash.
90.54) to preserve instream resources, in-
cluding fish and wildlife. In both Rev. Code
Wash. 90.22 and 90.54, two different and
potentially conflicting standards have been
implied. The terms “base” and “mini-
mum” can be interpreted in a hydrological
sense as prescribing relatively low in-
stream flows, whereas the terms “‘protect”

‘and “preserve” can be interpreted as re-

quiring anything up to a very high quality
habitat. In smaller streams, which contrib-
ute a disproportionately large fraction of
total salmonid production in Washington
streams (Figure 1}, a relativeiy high in-
stream flow is required to maintain high
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quality habitat. What level of protection is.

required by law?

In most statutes, it is difficult to either
ascertain legislative intent or determine
whether or not a proposed instream flow
regime would satisfy the legislative pur-
pose. To make this determination requires

a clear standard in the statute and knowl-
edge of the biological and regulatory con-
sequences of implementation of the stan-
dard. The standard should be measurable,
50 that a reviewer could determine wheth-
er or not a recommended instream flow
meets that standard.

DEFINING LEVELS OF INSTREAM FLOW PROTECTION

Five elements must be considered in de-
veloping standards for instream flow pro-
tection: (1) the goal, such as nondegrada-
tion; (2) resources (i.e., the goal is to be
considered in terms of certain resources);
(3) the unit of measurement (is the goal
achieved when the resource level equals
the goal, when the flows that produced the
goal are met, or when the flows that pro-
vide a specified combination of habitat in-
dexes are met?); (4) the benchmark time
period (a resource level varies over time,
but the goal must be established in relation
to a single resource level that has occurred
at a specific time in order to determine
whether that resource level has increased,
decreased, or remained constant); and (5)
the protection statistic.

Goal

The goal of establishing an instream flow
is to protect some level of a resource, use,
or value. The goal guides the standard.
Examples of goals could include (1) en-
hancement above pristine conditions, (2)
nondegradation with restoration, {3) non-
degradation, (4) no net loss, (5) set per-
centage of loss, (6) no loss of genetic di-
versity, and (7) population survival.

The goal with the highest level of pro-
tection is enhancement above pristine con-
ditions. This is rarely a realistic goal when
setting instream flows (exceptions dis-
cussed below). Furthermore, establishing
instream flow standards usually addresses
the effects of low flow conditions and not
the effects of high flows. Stream reaches
downstream from storage reservoirs are
exceptions, because these storage projects
can increase low flows and decrease high
flows. However, in many cases, storage res-
ervoirs are detrimental to the goal of en-
hancing a fishery resource.

Nondegradation with restoration nor-

mally is the highest possible goal for an
instream flow standard. This is a goal that
implies improvement over benchmark
conditions. Examples of nondegradation
include protecting resources that are in an
acceptable condition at the time of the
benchmark and réstoring those resources
that are below an acceptable level at the
time of the benchmark. Decisions on ac-
ceptability of resource levels are based on
knowledge of a stream’s potential for pro-
duction of fish or other instream rescurces.

The goal of nondegradation is a slightly
lower objective than nondegradation with
restoration for most fish. This goal suggests
that presently reduced resources would be
accepted instead of historic conditions.
Streams that were previously barren of fish
and have been stocked are a special case.

The next lower goal is “no net loss.” Al-
though the same in principle as nondegra-
dation, “no net loss” implies that local, sea-
sonal, or categorical losses will be permitted
in exchange for local, seasonal, or categor-
ical enhancements. If a goal of no net loss
is used, a careful accounting of these trade-
offs is necessary.

Yet another lower goal is a set percent-
age of loss compared to some benchmark.
An example would be a 10% Loss of habitat
over current conditions. This goal allows
some degradation while providing a finite
amount of water to satisfy additional de-
mand for out-of-stream uses. However, this
goal only assures that, as demand contin-
ues to grow, the same dilemma of out-of-
stream water uses versus instream re-
sources will be faced at a later date when
instream resources are further reduced. It
may be better to face these decisions now
rather than undertake hard public choices
in the future when options may be fewer
and more costly.

An alternative goal would be no loss of
genetic diversity in biological instream re-
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sources. Allendorf and Leary (1986) re-
viewed examples of inbreeding depression
resulting from loss of genetic diversity in
reduced populations of a number of species
of animals. Franklin (1980) suggested that
the short-term minimum effective popu-
lation size to maintain genetic diversity
would be 50 adults, but that a long-term
minimum population size would be 300.
The lowest goal is population survival.
This is sometimes implied to be protection
* of habitat for one male and one female of
the species of interest to survive and re-
produce. The risks of a goal of one breed-
ing pair probably ensure that it would not
be met after a few generations. Gilpin and
Soule {1986) discussed theoretical ap-
proaches to determining minimum viable
population sizes. Life history characteris-
tics such as fecundity, generation time, and
frequency of reproduction all affect mini-
mum viable population size estimates.
Lande (1988) suggested that behavioral
considerations make Franklin’s (1980) es-
timate of 500 adults too small a population
to maintain long-term viability. In prac-
tice, the goals of population survival and
no loss of genetic diversity may be the same.

Resources

Existing Washington state laws (Rev.
Code Wash. 90.54.020 [1]) recognize the
following instream uses, resources, and
values as beneficial uses of water: stock
watering, fish and wildlife maintenance
and enhancement, recreation, preserva-
tion of environmental and aesthetic val-
ues, and all other uses compatible with the
enjoyment of the public waters of the state.
Navigation is also recognized as an in-
stream resource to be considered in estab-
lishing instream flows (Rev. Code Wash:
90.54.020 [3][a]). If all of these resources are
to be considered in setting and measuring
instream flow standards, then each must
be quantifiable. If protection is to meet the
- goal, then resource levels must be mea-

surable at the benchmark and in the future.

Different resources may respond quite
differently to changes in streamflow. For
example, recreation includes both white
water boating, which has some of the high-
est instream flow requirements, and swim-
ming, which is favored when velocity is
minimized. If resources respond to changes

in streamflow differently and all responses
are strong, then it might be impossible to
protect all instream resources equally. An
exception might be the nondegradation
goal, where the instream flows equal those
of the benchmark period.

On the other hand, some instream re-
sources might be either more highly val-
ued or more sensitive to flow changes than
others. Fish and wildlife are the resources
most frequently identified as the purpose
for instream flows in western states
(McKinney and Taylor 1988). Valued or
sensitive resources might be chosen as the
resources by which goal attainment is mea-
sured.

Unit of Measurement

Three possible units of measurement are
the resource itself, flow, or habitat. It is
more difficult to measure some resources,
such as fish and wildlife, than to measure
flow. Even estimates of flow on ungauged
streams may be easier than measuring gains
and losses of fauna {Amerman and Ors-
born 1987). Habitat is more difficult to
quantify than flow, but indexes of habitat,
such as weighted usable area (WUA), can
be calculated as a function of flow (Bovee
1982).

If the resource is the unit of measure-
ment, is enough known to prescribe an
instream flow that will protect the chosen
resource level? In the case of long-lived
fishes with complex life histories, the an-
swer is no. Fish can exhibit alternative re-
actions, such as differences in growth, re-
production, and behavior in response to a
given influence.

This complex response to environmental
variables means that care must be taken
when relying on a single limiting factor in
the instream flow prescription. Flow af-
fects fish production both directly and in-
directly, as shown in a diagram of steel-
head trout (Oncorhynchus mykiss, formerly
Salmo gairdneri) life cycle (Figure 2). Loar
et al. {1985) concluded that habitat is im-
portant and that fish respond to habifat’
changes even when availability of other
resources is low. The concept of a single
limiting factor is most useful in simple eco-
systems and simple life histories.

Although Mathur et al. {1985) and Scott
and Shirvell (1987) have criticized the use
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FIGURE 2.

Influence of instream fow, including floeds, on life history of steelhead trout {Oncorhynchus

mykiss). Solid lines indicate positive influence, dashed lines indicate negative influence, and dotted lines

indicate influence by instreamn flow.

of the Physical Habitat Simulation (PHAB-
SIM) of the Instream Flow Incremental
Method (IFIM), which is used to calculate
WUA available at different flows, many
studies have shown the importance of flow-
influenced habitat components to fish pro-
duction. Changes in fish populations, sur-
vival, or growth are correlated with flow
changes and associated environmental fac-
tors, such as extreme temperatures, in many
cases (Table 1). Cross and Moss (1987) at-
tributed local extinctions and reductions
of native fish populations in Kansas streams
to reduced flows. Several habitat indexes
that have been locally correlated with fish
populations have incorporated flow statis-
tics, flow indexes, or flow-influenced hab-
itat components (Zillges 1977, Nickelson
and Hafele 1978; Binns and Eiserman 1979;
Orth and Maughan 1982; Loar et al. 1985;
Bowlby and Roff 1986; Wesche et al. 1987).
Easterbrooks (1981) found a strong rela-
tionship between rainbow trout density
and depth in an artificial stream.

If fish respond to the habitat compo-
nents used to calculate WUA in PHABSIM,
then PHABSIM should predict fish distri-
bution within a stream segment. Hardy et
al. (1982) found positive correlations be-
tween predicted and observed distribu-
tions of several fishes in a Nevada stream.

At the same time, other factors, some of

which may be independent of flow, also
influence fish production. Flow changes
can cause changes in other factors such as
water temperature, food production and
transport, intensity of competition, effec-
tiveness of predation or harvest, or migra-
tion, any of which could influence fish
populations independently from any
changes in those aspects of habitat indexed
by WUA (Figure 2); change in fish popu-
lations with a change in How could be a
response to one of these other fow-depen-
dent factors. Many low-related and flow-
independent factors can interact to affect
Ssh populations. Considering the diversity
of potential influences upon fish popuia-
tions, it is remarkable that the influence of
flow upon fish populations is detectable
(Nelson 1984; Orth 1987); it is not surpris-
ing that in many situations no significant
influence of flow is readily apparent (Scott
and Shirvell 1987; Platts and Nelson 19838).
Thus, resource level in a benchmark period
or in some later time may only partially
reflect the Hows that occurred during the
formative time for that resource,

Using flow as the unit of measurement
in an instream flow standard does not en-
sure a consistent level of resource protec-
tion. Neither a flow nor an exceedence flow
has a consistent relationship to habitat or -
production across a range of stream types

H. A. Beecher
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TABLE 1
Variations in fish populations related to flow or associated environmental parameters.

Fish

Biologicai respornse

Flow-related factor

References

1. adult coho salmon
(Oncorhynchus ki-
sutch)

2, adult coho salmon

3. adult steelhead
(0. mykiss)

4. juvenile steelhead

5. adult Yellowstone
cutthroat trout (O.
clarki bouviers)

6. brown trout (Sal-
mo trutta) adults

7. brown trout all
ages

8. brown trout adult
and juvenile

9. juvenile land-
locked Atlantic
salmon (Salmo sa-
lar)

10. Atlantic salmon

smolts

11. brook trout {Sal-
velinus fontinalis)
all ages

12, adult rainbow {O.
mykiss) and cut-
throat (O. clarki)
trout :

13. trout (Salmo trutia,
Q. mykiss, and Sai-
velinus fontinalis)
all ages

14. trout (brown and
rainbow) all ages

15. trout (brook,
brown, and rain-
bow) all ages

numbers of fish in
commercial catch

harvest management
model to predict
total number of
fish

numbers of fish in
sport catch

biomass {weight/

area)

numbers of fish

numbers of fish

abundance and big-

mass (weight/area}

numbers of fish, dis-
tribution of fish
numbers of fsh

numbers of fish

decrease in numbers
of fish

density, biomass, and
numbers of fish

numbers, biomass
{(weight/area),
growth, and sur-
vival of fish

numbers of fish or
biomass {weight/
area) of popula-
tions or age classes

biomass (weight/
area)

rearing summer low
flow in British Co-
lumbia, Oregon,
and Washington

rearing sumiter low
flow in Washington

rearing summer low
flows in western
Washington streams
habitat modeis incor-
porating depth, ve-
locity, and cover in
 western Oregon
numbers of Yellow-
stone River (Mon-
tana) tributaries not
severely dewatered
indexes of low flow
and cover in Wyo-
ming streams
index of habitat based
on depth and veloc-
ity in southern Ap-
palachian streams
weighted usable area
in Michigan stream
summer rainfall in
Maine

low fows in rivers in
Quebec and Nor-
way

drought in southern
Appalachian
streams

depth in artificial
stream channel

annual streamflow in
Wisconsin streams

low flows in Montana
streams

model including low
flows in Ontario
streams

Neave 1949; Mc-
Kernan et al. 1950;
Smoker 1955; Ma-
thews and Olson
1980

Zillges 1977

Beecher 1981

Nickelson and Hafele
1978

Clancy 1988

Wesche et al. 1987
Loar et a}, 1985

Gowan 1984

Havey and Davis 1970

Frenette et al. 1984;
Hvidsten and Uge-
dal in press

LaRoche and Pardue
1980

Easterbrooks 1981
White 1975
Nelson 1984

Bowlby and Roff 1986
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TABLE 1
Continued.

Fish Biological response

Flow-related factor References

reduced numbers of
fish in year class

16. trout (brown,
brook, cutthroat,
and rainbow)
young-of-the-year

17. trout (brown and numbers of fish and

rainbow) all ages survival
18. trout (brook, biomass (weight/
brown, cutthroat, area)
and rainbow} all
ages

19. rainbow trout, numbers of fish
whitefish (Proso-
ptum williamsoni),
bass (Micropterus
spp.), and crappie
(Pomoxis spp.) all
ages

20. larval river-
spawrning fishes:
goldeve (Hiodon
alpsoides), min-
nows (Hybognathus
hankinsoni and H.
nuchalis), walleye
(SHzostedion vitre-
um), and sauger
{S. canadense)

21. young-of-the-year —numbers of fish
striped bass (Mo-
rone saxatilis)

numbers of fsh

22. smallmouth bass declines in growth
(Micropterus do- rate
[omieui} ages 1-4
23, freckled madtom  biomass (weight/
(Nofurus noctur- area)
nus), central
stoneroller
(Campostoma
anomaium), and
orange-belly dart-
er (Etheostoma ra-
digsum} all ages

spring runoff in Colo- Nehring and Ander-
rado streams son 1984; Anderson
and Nehring 1985

weighted usable area  Bovee 1988
(WUA) in Colorado
habitat quality index  Binns and Eiserman
(HQI including 1979
late summer flow
and annual flow

variation
low Hows during pre- Mongillo and Faulcon-
ceding 3 years in er 1980
Yakima River,
Washington

river flows during Nelson 1980
spawning season in
South Dakota reser-

Voir

river flow in delta of Turner and Chadwick
Sacramento-5an 1972; Stevens 1977

Joaquin rivers, Cali-

fornia
deviations from opti- Paragamian and Wilev
mum flow 1987

WUA index of habitat Orth and Maughan
based on depth and 1982
velocity

and sizes. [tis possible that the same stream
channel could produce the same quantity
of habitat or fish at two different flows (Fig-
ure 3). In such a situation; using the higher
of the two flows might preclude further
out-of-stream uses of the water.

Habitat is an intermediate step between
flow and resource. Habitat indexes, such as
WUA, are not susceptible to external non-
flow-related influences, such as El Nifio

(Mysak 1986) or harvest and predation.
Habitat indexes can also account for differ-
ing incremental values of water to resource
production. However, it would be neces-
sary to standardize units of a habitat index;
one unit of WUA in one instream flow
study is seldom equivalent to one unit of
WUA in another study, even at the same
site. WUA generally does not address
channel maintenance flows or flows to

H. A. Beecher

103 | Pe




-l e
<
- 1 p
@ ! |
< ; i
= : |
| |
TFLOW
FIGURE 3. Twe different flows may provide the

same amount of habitat. If the same resources can
be produced by protecting the lower flow as by pro-
tecting the higher flow, protection of the lower fow
Jeaves more water available for other uses.

transport smolts of anadromous fish sea-
ward, Despite these considerations, a hab-
itat index similar to WUA holds consid-
erabie promise as the unit of measurement.

Benchmark Time Period

An instream flow should protect a re-
source level related to a specific time pe-
riod, the benchmark. The benchmark time

period may be a time when pristiné con--

ditions existed, some period of cultural sig-
nificance (such as statehood), recent past,
or the present. This decision can greatly
influence the ievel of protection provided
by an instream flow. For example, if the
instream use being considered is naviga-
tion, then the standard would be much
higher in Washington with a benchmark
of the present than with a benchmark of
1889, the year of statehood. Higher in-
stream flows will be required in navigable
waters to maintain present navigation than
to maintain the amount of navigation that
occurred a century ago. However, because
of the locks and dams that aid in naviga-
tion, as well as other environmental
changes and harvest, a benchmark period

of 1889 would provide a higher standard
for anadromous salmonids than would a
benchmark of the present (Chapman 1986;
Li et al. 1987). :
The duration of the benchmark time pe-
riod can also affect the standard. Resources
and flow vary in response to many factors.
Some of the variation appears to be cycli-
cal; some does not. If the benchmark time
period brackets only an extreme of the cycle
or a significant noncyclical event, then the
standard could be modified accordingly.

Protection Statistic

Both the mean and median are functions
of the full range of data from which they
are generated. However, using a mean or
median as the protection statistic may not
maintain the resource at its historic mean
or median level. The upper extremes of a
distribution are important to maintaining
an “‘average.” If the data are levels of com-
mercial fish, then upper extremes contrib-
ute disproportionately to harvest because
alarge part of a fish population is allocated
for spawning escapement. If an instream’
flow is set to protect average conditions,
but higher than average conditions are
eliminated, then the average will decline.:
Thus a standard set to protect an average
may fail to do so. [t may be necessary to
protect an upper extreme in order to main-
tain an average condition. Thus, if fish
population, quantity of habitat, or flow is
the unit of measurement, and if the goal
is nondegradation, then an infrequently
exceeded amount of that unit of measure-
ment must be the standard.

Other hydrological statistics are often
proposed as protection statistics. However,
hydrological statistics will yield inconsis-
tent results relative to the goal because
habitat is a function of fow and channel
shape, not frequency of flow.

AN EXAMPLE: STANDARD FOR WASHINGTON

Existing Washington statutes suggest or
imply a nondegradation or no net loss goal
for fish and other instream resources. Ex-
amples are statutory language such as “suf-
ficient to support” (Rev. Code Wash.
75.20.050), “protect” (Rev. Code Wash.
90.22), and “preserve” (Rev. Code Wash.
90.54).

Although the exact relation between flow
and fish was not understood quantitatively
when these laws were enacted, it was ap-
parent then, as now, that fish need water.
Water to be reserved in the stream was for
the fish and fisheries themselves (Rev. Code
Wash. 75.20.050, 90.22, and 90.34). Rather
than use all fish (or all instream resources)
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as the resource to be measured, the stan-
dard should focus on a few larger, cultur-
ally important, flow-sensitive fishes. Larg-
er fshes generally inhabit deeper, faster
water and are, therefore, more flow-sensi-
tive than smaller fishes (Hanson 1977).
With the exception of some threatened or
endangered fishes, culturally important
fishes are generally large enough to be val-
ued for food or sport. Because larger fishes
are generally less numerous than smaller
fishes, population losses due to habitat
losses might also be more significant to
population survival and genetic diversity
in larger fishes.

A habitat index, unlike a resource level—
such as a fish population—can be tied
quantitatively to a known past or future
flow. Thus, to meet the goals of the Wash-
ington statutes, an instream flow standard
might be nondegradation of fish habitat as
measured by a flow-related habitat index,
such as WUA.

A 22-year benchmark period would in-
corporate a large amount of the variation
recorded in fish populations and flows. This
length of time would cover a complete cycle
of solar activity (Howard 1981). A recent
benchmark covering 1960-1982 would en-
sure reasonable availability of records of
flows and fish production.

In order to achieve the goal of nondegra-
dation, an appropriate protection statistic
would be an infrequently exceeded amount
of habitat. An example might be the 5%
exceedence WUA. With this protection sta-
tistic as part of the standard, extraordi-
narily favorable conditions permitting
unusually high production would not be
precluded. Occasional high levels of pro-

LARGE _—
SMALL | fessceuans
FLAT STEEP

FIGURE 4. In single-channel streams, duration
af availability of at least a given quantity of habitat
is most limited in small, low-gradient streams.

duction contribute to maintenance of an
average and significantly increase harvest
of fish.

A statistic of percent exceedence WUA
would be calculated in much the same way
as percent exceedence flows are calculated.
Given a set of daily, weekly, or monthly
Hows over the benchmark peried, a WUA
value would be paired with each flow; then
WUA values would be ordered from low
to high for the day, week, or month in
question, and the WUA value at or just
below the highest 5% of the values would
be the 5% exceedence WUA.

In this recommended standard, goal is
nondegradation; resource is culturally im-
portant, flow-sensitive fishes; unit of mea-
surement is WUA for those fishes; bench-
mark is a recent 22-year period beginning
after 1960; and protection statistic is 5%
exceedence WUA. This recommendation
illustrates how considering each of the ele-
ments discussed will increase the chance
that the choice is based upon a good un-
derstanding of the options, their signifi-
cance, and consequences.

REGIjLATORY CONSEQUENCES

Adherence to the suggested standard
would limit future diversion to large or
high-gradient streams. In numerous IFIM
studies in Washington, I have observed fre-
guent water availability above what is
needed to maximize WUA in large or high-
gradient streams and very infrequent water
availability above what is needed to max-
imize WUA in small, low-gradient streams
(Figure 4). Thus, in large streams, a 5% ex-
ceedence WUA may correspond to a fre-

quently exceeded flow, but in small, low-
gradient streams the exceedence frequency
for WUA and flow are correlated.

In large or high-gradient streams, high
velocities frequently limit habitat usability
for most fish in large areas of the stream
channel. Flow reduction often reduces ve-
locities into a usable range in these streams.
In low-gradient streams, velocities are sel-
dom unusably high except during infre-
quent floods. Despite some published sal-
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TABLE2 .

Use of deep water by Washington salmonids.

Incidental observations by author.

Species

Stream

-cutthroat trout (Oncorhynchus clarki clarki) adult
steelhead (O. mykiss) parr

chincok salmon (0. fshawytscha) smolt

pink salmon (0. gorbuscha) adult

mountain whitefish (Prosopium williamsoni} adult

Snoqualmie River above falls
below falls
below falls

Skagit River

Kettle, Yakima, Skagit, and Sno-
qualmie rivers

monid depth preference curves indicating
reduced suitability of deep water (Bovee
1978; Wilson et al. 1981; Sheppard and
Johnson 1985; DeGraaf and Bain 1986;
Campbell and Eddy 1988}, I have observed
high densities of salmonids in parts of some
streams where depth was 5-10 m but where
velocity was suitable (Table 2). Therefore,
it appears that increasing depth does not
reduce suitability unless accompanied by
unsuitable velocity (or uniess depth avoid-
ance serves to reduce predation or risk of
" redd scouring). In small streams, channel
roughness constrains velocity so that it does
not exceed suitability except at infrequent
high flows, and depth in small streams is
often made more suitable as depth in-
creases with flow,
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