i

NCAR/TN-418+TA
NCAR TECHNICAL NOTE

December 14495

A USER’S GUIDE TO PIKATA 1.0

Paul Charbonmean
Barry Knapp

HIGH ALTITUDE OBSERVATORY
NATIONAL CENTER, FOR ATMQSPHERIC RESEARCH
BOULDER, COLORADCG

TABLE OF CONTENTS

List of Figuires ... it et e it v
ST Al 11 vi
= 7+ - 1x

1. Introduction: gemetic algorithms and evelutionary biclogy

1.1 Ewclution as an optimization process?,0 iiiiennnnnnn 1
1.2 A basic genetic algorithmo i 2
2. Imstallation and quick start
2.1 Obtaining acopy of PIKATA it 1]
2.2 Installatiomot e e e b
2.3 User SUPPOTt ..ottt it i i e, 7
24 Bugreports ... e 7
2.5 Differences with pre-release versionscoeviiieennneennn 8
2.8 Reference and credits it i i e L

3. The PIKATIAL subroutine

3.1 Gverview and problem formmlation 9
3.2 Top-level stIictiire it i i e i e 10
3.3 Imitial population i e e 11
3.4 Belectlon technique i e 12
3.0 Encoding and decoding ... i 15
3.6 The crossover operator ittt it i e iaaanns 17
3.7 The mutation operator v itirn i it tn i nenanns 18
3.8 Reproduction plans i i i i e 20
TR N L 1 1 22

4. Using PIKATA

4.1 Calling sequencettt ittt 25
4.2 Input/Output ..o i 25
4.3 Fitness function ..., . i s 2h
4.4 Internal safety checks and Error/Warning messages 26

4.5 The input control wector ckrl 26

4.6 Additional user-supplied functions and subroutines 31
4.7 Ffficiency considerations it 32
5. Examples
5.1 Maximizing a function of two varlables 51
5.2 A linear leastsquares fit i 41
5.3 A non-linear least-squares fit0 i i i i i 47
5.4 Generalized least squares fitting by distance regression G
5.5 Data modeling using robust estimators &0
5.6 A warning concerning error estimates, &b
0.7 Cther applilcations trtnn i i et tn i e earaen 86

§. Where to go from here: hadking PIKATA

6.1 Owerall coding structure and subroutine dependencies Y
6.2 Tailoring or expanding the Cutputo oL, 64
6.3 Incorporating additional strategies and operators 7l
6.4 Bugpgested further readings o iinn i, 74
Appendix: Code listings
Al Source code for PTIKATAttt it ii e eanaens i
A.2 Random mimber generator and ranking subroutine a0
A3 Sample driver and fitness function for installation check 94
A 4 Drivers for the example problems of chapter 5 L
Bl ogr APy ..ot e 107

LIST OF FIGURES

3.1 Adjusting Selection Pressireoooviiiiiiiiii it 14
4.1 Convergence curve for the test problem of §2.31, 33
b.1 2-D surface for the installation chedk problem of 82.3 36
5.2 Performance of PIKATLA on the maximization problem of Fig. 5.1 39
5.4 Evolution of the population during the PKJ evcluticnaryrun 44
H.4d Synthetic dataset e 42
5.0 (Qenetic limear least squares fit to the dataset of Fig. 5.4 ... L. L. 45
5.6 Ewolution of solution parameters throughout the evolution 44
5.7 (Qenetic nonlinear least squares fit to the dataset of Fig. 4 h2
5.8 Ewvolution of the hest x? for the sohitions of Fig. 5.7 d
5.9 Synthetic dataset for the generalized nonlinear least squares problem .. 57
5.10 A 200-generation genetic fit to the synthetic dataset of Fig. 5.9 G0
5.11 Synthetic dataset for a “damaged” circleo oLl G2
5.12 Hough transform for the dataset of Fig. 5.11 63
5.13 Robust fit to the dataset of Fig. 511 ... i 84

6.1 Dependency chart for PIKATA ittt ie i eaennns 70

LIST OF TABLES

I Flements of input control wector ..., ... ittt iie i 30
IO Bun parameters and global performance for first example problem ..., 38

T Nonlinear least squares solutions: parameters for best individuals b

wiil

PREFACE

“Ewolution is cleverer than you are” writes Francis Cridk, co-discoverer of
DNA and 1962 Nobel laureate. His point may well be lost on the majority of prac-
ticing scientists trained in the physical sciences, where determinism, reprodiucibil-
ity and predictability are central temets of the Wellonschenung that is often taken
to define “hard sclence”. Yet time and time again, evolution has accomplished as
tonishing feats of engineering that, to this day, remain the envy of researchers at
the forefront of robotics and artificial intelligence. It is also particularly notewor-
thy that evolution has done so without any external, “higher” puidance, through
processes that are simple, local, and incorporate markedly stochastic components.

Perhaps the most striking operational feature of living organisms is their high
level of sdepietion to their environment. The ubiquitous existence of complex
adaptations in living organisms was an important factor in leading Charles Dar-
win to formulate his original theory of evolution by means of natural selection.
Adaptation was also the focal point of John Holland’s research in the late 196(0°s
and early 187()'s, which was extremely influential in originating and guiding the
development of what are now usually reforred to as genetéic elgordhms. Twenty
years after the publication in 1875 of Holland's seminal Adaptation in Natural and
Artificial Systemns, genetic algorithms have amply demonstrated their usefulness
{and robustness) in a variety of problem settings. Yet more often than not they
contimie to elicit mixed reactions on the part of established practitioners overly
committed to conventional, deterministic optimization methods.

The genetic alporithm-based optimization subroutine PIKATA described in this
guide is tallored towards problems of arumerice! optimization. It fills a rather spe-
cific ecological niche; unlike the most popular penetic algorithm packages currently
available commercially or in the public domain, PIKATA is written in plain old
standard FORTRAN 77, as opposed to the “better” languages usually favored by
hard-nosed computer scientists. Furthermore, we have attempted to emulate the
user-friendly style of the subroutines to be found in Press et el. (1592)'s Numerical
Recipes., This, admittedly, is a high standard to aim for. Qnly time will tell by
how far we missed. While we consider PIKATA to be more of a learning instrument
than a true production code, we do believe that we have succeeded in producing
a plece of optimization software that is astonishingly robust by any standards.

This user's guide is organized as follows; chapter 1 is a very brief review of
some aspects of the biclogical evelutionary process relevant to the understanding

X

of penetic algorithms. Chapter 2 is concerned with pragmatic lssues including
how to obtain, install and walidate the cods. Chapters 3 and 4 contain most of
the material traditionally found in a user's guide; chapter J describes the vari-
ols penetic operators and ecological strategies incorporated in PIKATA including,
at. time, fairly detailed discussions of specific implementation ssues. Chapter 4
contains detailed desecriptions of input parameters, ealling sequence, additional
roltines required from the user, etc. Readers favoring the “hands on™ approach
to learning may get a quidk start by poing straight to chapter 4 upon successfully
completing the installation, and only subsequently study the (important) material
discussed in chapter 3. As a user’s guide, the present text differs perhaps most
prominently from the norm in including a lengthy chapter (32 pages), chapter 5,
presenting and discussing examples of applications of the subroutine to a sequence
of Increasingly difficult data modeling preoblems, including code listings for exam-
ple fitness finections. Chapter 8§ provides additional information hopefully useful
to users wanting to modify, expand and /or tailor the code itself, and includes an
annotated bibliography peinting to what we think are peod entry peints in the
genetic algorithm literature. Even though this user's guide is neither meant to be
a tutorial nor a textbook, we did attempt to discuss relevant background material
and include practical tips and peneral puidelines useful in dealing with real life
problems, wherever most appropriate in the text and in particular in chapter 5.

While it was our original intention to avoid jargon, we ended up retaining
some of the biologically inspired terminology often used in the genetic algorithms
Lterature. In the cowurse of writing this user's guide it became clear to us that
{1) the biclogical terminclogy is actually quite useful in describing the mode of
operation of genetic algorithms, and it is certainly no more obhscure than the alter-
nate computer science-based jargon; (2) a prospective user not at all exposed to
this terminclogy and trying to lock more deeply Into aspects of genetic algorithms
not covered in this guide may have some difficulty working through some of the
relevant literature. All the required biclogical terminclogy s laid cut in chapter
1, and is used minimally and in as unambiguous a way as possible.

A preface s traditionally the place where authors acknowledge outside con-
tributions, and a mumber of individuals certainly deserve mention here. Numerous
discussions with Frank Crary, In the early developmental stages of the PIKATA
code, have contributed significantly in shaping the final product. Ted Kenmnelly
was our first “frendly user” to successfully use an early version of the code to solve
a real resparch problem, a process in the course of which much was learned about
what makes {or breaks) a truly user-friendly genetic algorithms-based optimiza-
tion subroutine. Usefil feedback was also provided by attendees of the two-day
intensive class taught by one of us (P.CC.} at the Centre de Recherche en Cal-
cul Appliqué (Montréal, Canada) in May 1995, in particular by Richard Boivin,

X

Claude Carignan, Robert Lamontagne and Jacques Richer. We also wish to thank
Tim Brown for sugpesting the “damaped circle” test problem for robust estima-
tors {£5.5), for pointers to the Hough transform as used in computer vision, and
for mumercus fruitfil discussions of related Issues in data modeling. Thanks are
also due to (Gene Lavely for pointers to applications of genetic algorithms in the
geophysical literature, and to Ken De Jong for taking the time to clarify for us
some important points related to error estimation in genetic sclhiutions, ncluding
the warning which we repeat essentially werbolim at the opening of §5.6. Last but
not least, we are grateful to Peter Fox for a critical reading of the final draft of
this puide.

Paul Charbonnean
Barry Knapp

December 1345, Boulder

1. INTRODUCTION: GENETIC ALGORITHMS
AND EVOLUTIONARY BIOLOGY

1.1 Evolution as an optimization process?

The general ideas of erolution and edepietion predate Charles Darwin’s 1859 On
the {rigin of Species by means of nafiral Selection (see Bowler, 1983), but it is
Darwin {and more or less simultanecusly A K. Wallace) who first identified what Is
still considered by most to be the primary driving mechanism of evolution: netuwral
selection. Natural selection is the process whereby individuals better adapted to
their environment (i.e., “fitter”, in the wider sense of the word) tend to produce,
on average, more offspring that their less well endowed competitors In the breed-
ing popidation. Darwin and his contempaoraries also realized that two additional
npredients are required for natural selection to lead to evolution. The first Is
heredily; an offspring must inherit, in some way, some of the characteristics that
make its parents fit, otherwise evolition is effectively reset to zero with each new
generation. The second ingredient is werebifly: at any given time there must ex-
st a spectrum of fitness among population members, otherwise natural selection
simply cannot operate.

Although both these aspects remained unexplained in Darwin's lifetime, the
primary processes through which heredity is mediated and variation maintained
are now basically understood. Each cell of each individual {or pherotype) con-
tains a complete set of instructions effectively defining its physical {(and possibly
behavioral) makeup. This information is encoded in the form of linear gene se-
quences stored on pairs of homelogous chremosemes, which constitute the individ-
ual's gernolype. Sexual reproduction invelves the combination of genetic material
from both parents, one half of each chromosome pair coming from each parent.
A fundamental aspect of this breeding process is that the relationship between
phenotype and genotype is unidirectional; a given individual can be thought of
as an external manifestation of its genotype (although there exdst environmental
influences in development and growth that are beyond genmetic control), but the
individual cannot influence its own genetic makeup. It can, however, influence the
genetic makeup of subsequent generations through differential reproductive suc-
cess, which Is of course where natural selection plays its crucial role. To a large

2

extent, wriability turns out to be maintained by the machinery of heredity itself
The production of reproductive cells often entails the recombination of penetic
material across homologois chromosomes through the processes of crossever and
tnversion. Copying mistakes and/or true random events also oceasionally intro-
duce mntations in the penctype. The ensemble of all penes existing at a given time
in the breeding population makes up the gere pool For a piven gene associated
with a chromosomal locus, there exist in general more than one allowed “gene
value” (or ellele in biclogical terminology). Evolution ean be thought of —and
mathematically modeled, see e.g. Maynard Smith {1988)— in terms of temporal
changes In allele frequencies throughout the gene pool.

Genetic Algorithms (hereafter “GGA™) are a class of heuristic search techniques
that incorporate these ideas in a setting that is computational rather than bic-
logical. Strictly speaking, genetic algorithms do not optimize, and neither does
biclogical evelution (Holland 1§62, prefice; De Jong 1993); evolution uses whatever
material that Is at its disposal to produce above-average individuals. Evolution is
blind. FEwclution has no ultimate goal of “perfection™. FEwen if it did, evelution
st accommodate physical constraints associated with development and growth,
&0 that not all paths are possible in penetic “parameter space”™. COme could per-
haps argue than evolution performs a form of highly constrained optimization, but
even then it certainly does not optimize in the mathematical sense of the word.
Nevertheless, penetic algorithms form the basis of a class of extremely robust
optimization method known as GA-besed optimizers. The GA-based subroutine
PIKATA iz ane such optimizer.

1.2 A basic genetie algorithm

In their simplest incarnation, penetic algorithms make use of the following reduced
version of the biclogical evolutionary process; the gene pool —and its associated
phenotypic population— evalves in response to

(1) differential reproductive success in the population,
{2) penetic recombination {crossover) cccurring, at breeding,
{3) random mutations affecting a subset of breeding events.

Consider then the following generic optimization problem. Qe is given a “model”
that depends on a set of parameters a, and a finctional relation f{a) that returns
a measure of quality for the corresponding model {this could be a xZ-type BoodTness
of fit measure if the model is compared to data, for example). The optimization
task consists in finding the “point™ a* defining a model that maximizes the quality
measure f{a). For the sake of the argument suppose that one has available a target

3
value F and define a tolerance criterion £ (3> () such that a “solution™ a* satisfying
[F—fla)|<e (1.1)

corTesponds to a mode]l deemed acceptable. Define now a population A as a set of
K realizations of the parameters a:

A={a}, k=12 .,K (1.2)

and an operator B that, when applied to a given population A1, produces a
new popilation A%. From these building blocks a basic genetic algorithm could
ba constructed as follows:

Initialize: A% =a, k=1,...K
Compute: f2 = f{a?)

n:=1{
do while |[F—max(fZ)| > ¢
n:=n+1
A" = R(A™)
Compute: f7, kE=1,...K
end do

* ___ k]
A" = By o)

Were it not that the operator 'R acts on a population rather than on a single indi-
vidual, this would look very much like some generic Monte Carle algorithm. The
crucial difference lies with the definition of the operator B. First, B does not op-
erate directly on the parameters az (the phenotypes), but rather on their encoded
versions {the genotypes). Second, ‘R applies crossover and mutation operations on
the penotypes, processes that involve markedly stochastic aspects, as opposed to
fully deterministic schemes such as averaging. Third, B does not operate on the
existing popidation In a homogeneous fashion, but selects a subset of the popu-
lation an the basis of their quality measure f{a) (their fitness). In analogy with
biclogical systems, a phenotype is encoded in the form of a string {or chromosome)
of digits. In contrast to hiclogical systems, In basic genetic algorithms it is com-
mon to filly encode a phenotype on a single chromosome, as opposed to groups
of homelogous chromosome pairs with dominant /recessive character. A genotype
then is made of a single chromoscme, and both terms can be used interchangeably
{to the probable dismay of evolutionary biclogists...).

These considerations notwithstanding, the algorithm listed above still only
defines an edepiive plon or evolulion strotegy. It pretty much ensures gradial im-
provement over successive iterations, it does not puarantee abschite maximiza-
tion in anything approaching the strict mathematical sense of the word. GA-based

4

optimizers typically implement additional strategies and techniques to improve
performance in the context of numerical optimization. A mumber of these, ncor-
porated in the GA-hased optimization subroutine PIKATA, are described in detail
in chapter 3 below.

Genetic algorithms have been used successfully to solve a number of dif-
ficult optimization problems arising in computer science, artificial intellipence,
computer-aided engineering design, pecseismic modeling, and are attracting in-
creasing attention in in other branches of the physieal sclences. Yet, penerally
speaking, they are not yet a standard component of the mumerical modeler's tool-
boxes. In the delightful introductory essay at the beginning of his monegraph
on penetic programming, Koza (1992) identifies seven basic principles of good
conventional optimization techniques: correctness, consistency, justifiability, cer-
tainty, orderliness, parsimony, and decisiveness. He then poes on to argue that
genetic alporithms incorporate nere of these presumably sound principles. This
Ay B0 a long a way In explaining the occasional resistance encowuntered by ge-
netic algorithm practitioners attempting to convince the skeptics of the power,
robustness, and ultimately usefulness, of GA-based optimizers.

Watching a genetic algorithm in progress, and seeing the ease with which it
locates and locks on to the optimal scluticn, can be a deeply fascinating, if not
troubling experience. This is perhaps because conceptually, penetic algorithms
embody the very mechanisms that led to our own existence. Such mystical con-
siderations notwithstanding, the bottom line, if there is to be one, is that genetic
algorithms work, and often frightfully well. From a purely pragmatic standpoint,
this is indeed the bottom line. It is also precisely the messapged conveyed by the
theory of (biclogical) evolution by means of natural selection

2. INSTALLATION AND QUICKSTART

2.1 Obtaining a copy of PIKAIA

Source codes for PIKAIA, including the subroutine itself as well as driver programs
and fitness functions for the examples discussed in chapter b of this guide, can be
obtained from NCAR's High Altitude Observatory via anonymous fip. First &p
to

hao.ucar.aedn

and log in using the username anonymousa and your e-mail address as the password.
You have now landed on a UNIX system. Type the following command:

ed /pub/pikaia

The command la can then be used to display the directory’s content. The file
README iz self-explanatory; please do read it, as it will most likely includes ad-
ditional {(and possibly important) information which we could not {or forgot to)
include in this guide. The file uaerguide.pa is a standard postseript file contain-
ing this user's guide, including encapsulated Figures, that should be printable on
any postscript printer. Note that this is a large file, about 2 Megabytes., The
file uaerguide.txt is an ASCIT character version of the users guide, excluding
Figures but including Figure captions. This should be printable on ery printer
that recognizes the standard ASCII character set. The file pikaia.f contains not
only the genetic subroutine PIKATA itself, but also a driver code, fitness funection
and other required routines, including a randem number generator. The file is
a completely self contained source code which can be used for installation check
{see §2.2 below). The directory examplea contains drivers, fitness functions and
synthetic datasets for the examples discussed in chapter b of this guide.

2.2 A test problem for installation check
The file pikaia.f includes a sample fitness function and driver code which can

{and should) be used as a test problem for installation check. The precise nature of
this test prohlem is presently unimportant; let 1s simply mention that the problem

8

consists in finding the global maximum (z*, *) of a function f{x, 1) that describes
a 2-D “landscape”™ characterized by multiple regions of secondary maxima, with
the absohite maximum located at {(z* 4*) = (0.5,0.5), where f{z*,4*) = 1.0.
This maximization problem will be revisited in due time below. For now simply
compile/link the file pikaia.f {on a Unix system the command £f77 pikaia.f
should produce the executable a.out). Now run the executable; you are first
prompted for a (positive and non-zerc) integer value used as a seed for PIKATA:
randem number generator:

Random number ased {I+4)7

Type in the value 123456 and hit <return>>; after a short delay (the duration of
which being dependent on the hardware platform used) something similar to the
following cutput should be returned to the screen:

atatua: 0
x: 0.50027 00 0.48983800
I: 0.9999299
ctrl: 100.00000 50.00000 &.00000 O0.35000 2.00000 O.00500
0.0000 0.2000 1.00000 1.00000 1.00000 O.00000

The walue atatus=0 indicates normal termination. The next two lines indi-
cate that PIKATA has found a “selution™ (z*,%*) = (0.50027,0.49988) for which
F(&*, 4™) =0.9999299. This actually compares favorably to the true global masd-
mum F{0.50000, 0.50000) = 1.00000, even though the evolution is only carried ot
over 10{ peneraticns for this test problem. The next two lines simply echo some
mput parameter values, corresponding here to internal defanlt walues except for
the generational length {(more on all of these n §4.5 below).

It is important to realize that the behavior of the random mimber generator
s dependent on the specific implementation of foating-peint arithmetics, and so
can be expected to be platform-dependent. Running the test problem on varicus
platform will net, in general, produce a solution idemtical to that listed here. This
s because the evolutionary “path” followed by the population is dependent on
stochastic components which are governed by operators relying on the sequence
of deviates returned by the random mimber generator {more on this in §4.6.1 be-
low). For the same reason, different walues of the seed for the random number
generator will in general lead to different solutions. (Cme may find that scluticns
having f{z*,4*) ~ 0.65 are sometimes returned. The occasional occurrence of
such a solution, for certain seed walues, should not be a cause for alarm. How-
ever, one should become suspicious if upon using different random seeds PIKATA

7

systematically fails to converge to a solution having (&*,4*) ~ {0.50,0.50). Such
a behavior may indicate a true problem.

We suggest that upon successful installation, prospective users send a short
e-mail to the following address:

pikaia@hac.ucar.edun

meluding their valid and complete e-mail address; the point i1s not so nnich to keep
track of who obtained a copy of the code, but rather to keep an updated mailing list
of past and present users. This would allow us to notify the user commumnity of the
timing of future releases, or distribute code patches or bug correction information,
as the case may be.

2.3 User support (or more specifically, lack thereof)

Although we do mot formally commit to providing any kind of user support, we
remain interested in hearing any comment, sugpgestion, and for criticism concerning
the code or this user's puide. Imasmuch as our respective work commitments allow
it, we mey answer application-related questions, or at least try to provide pointers
to appropriate entry points in the GA literature. Chit of curiosity, we would
certainly be interested in being kept informed, if only briefly, of any successful
application of our little subroutine to real-life research problems. All queries or
other communications should be e-mailed to:

pileua@hac.ucar.edu
Kesponse time should be expected to be extremely variable.

2.4 Bug reports

Although we have, at this writing, tested PIKATA extensively on a number of
test problems, and have used it successfully for an already lengthy list of real
applications, the possibility always remains that we managed to miss something,.
If a user finds a bug somewhere, we would REALLY like to hear about it, so that
we can notify the user community accordingly. Reports for bugs {or suspected
bugs) should be e-mailed to, you guessed it:

pikaia@hac.ucar.edu

Please make it clear in your message header that the e-mail is related to a potential
bug report, as we will tend to give pricrity to such messapes, over other types of
queries,

2.5 Differences with pre-release versions

A small mumber of pre-release versions of PIKAIA have been in circulation since
May 1995, These versions can be identified by the comment line

¢ Veraion of 1886 April 13

m the long series of comment lines at the beginning of the subroutine pikaia.f
itself. These warious versions differ only in minor ways from version 1.0 described
here, Differences are to be found In the settings of some default walues, maximim
array sizes, and so on. Note however that these early versions do not test for
even/odd population size {more on this below), or for zero value of the random
soad.

Prior to May 1995, various ancestral versions of PIKALA, poing under the
names of darwin, darvinl, or darwvin2, were also distributed informally to a
few individuals. These codes bear only superficial resemblance to PIKATA 1.0,
and are markedly inferior in a number of respects {modularity, efficiency, etc.).
Anyhody In possession of such versions should definitely obtain a copy of PIKATA
1.0, especially since some of these ancestral versions contain a rather involved bug
that significantly deprades performance under some parameter settings.

2.8 Reference and credits

The GA-based optimization subroutine PIKATA was first described in the fllowing
paper, published In The Astrophysical Journal {Supplements) in December 1995:

Charbonneau, P. 1995, ApIS, 101, 304.

Note that the code listing included as an Appendix to that paper corresponds to
the pre-release vorsion of 1995 April 13 mentioned previcusly. The present user’s
guide should be referenced as

Charbonneau, P., & Knapp, B. 1998, A User’s Ghiide fo PIKAIA 1.4, NCAR,
Technical Note 418+TA (Boulder: National Center for Atmospheric

PIKAIA is a public domain piece of software, and so we Impose no restrictions on
further distribution for research purposes. We do encourage “second-hand”™ sers
to send a brief e-mail to the above-cited e-mail address, for the purposes already

mentioned.

3. PIKATA: A GENETIC ALGORITHM-BASED
OPTIMIZATION SUBROUTINE

3.1 Overview and problem definition

PIKAIA is a peneral purpose optimization subroutine based on a genetic al-
gorithm. The subroutine is written in FORTRAN, and except for two minor ex-
ceptions adheres strictly to the ANSI FORTRAN-77 standard. These exceptions
are (1) the use of lower case alphabet, and {2) the systematic use of implicit
none statements. Keaders having strong allergic reactions to FORTRAN and/or
nterested in more elaborate genetic alporithm packages may wish to take a lock
at the Genetic Algorithm Archive Web Page (http://www.aic.nrl navy. mil /galist)
for listings and directions to various other public domain GA padkages awailable
electronically.

Internally, PIKATA secks to maximize a {(user-defined) function f{x) in a
hounded n-dimensional space, i.e.,

X = (%1, Ty - Fon)y 7 € [0.0,1.0] V& {(3.1)

The restriction of parameter values in the range [0.0, 1.0] allows greater flexibility
and portahility across problem domain. This, however, implies that the user most
adequately normalize the input parameters of the function to be maxdmized with
respect to those parameters.

PIKAIA carries out its maximization task on a population made up of np Indi-
viduals {trial solutions). This population size remains fixed throughout the evolhi-
tionary process. Rather than evolving the population until some preset tolerance
criterion is satisfied, PIKATA carries the evolution over a fixed, preset number of
generations.

PIKAIA is meant primarily to be a learning instrument, not a production code.
In most Instances where conflict arcse betwesn efficiency and clarity, the former
was sacrificed for the sake of the latter.

10
3.2 Top=level Structure

The core of PIKATA is made up of two nested loops controlling the generational
and reproductive cycles. These loops are strictured as follow:

do 10 ig=1,ngen [Generatiomal cycle 1
do 20 ip=1,np/2 [Reproductive cycle]
call aelect{ipl) [Pick dad]
21 call aelect{ip2) [Pick mom]
if{ipl.eq.ip2) gotoc 21 [No breeding with oneaelf!]
call encode{phl,gni) [build dad’a chromoaome]
call encode{ph2,gnl) [build mom?s chromosome]
call croas {gnl,gn2) [The actual X-rated part]
call mutate{gnl) [Mutate firat offaspring]
call mutate{gn2) [Mutate mecond offapring]
call decode{phl,gnl) [Decode firat offapring]
call decode{ph2,gn2) [Decode mecond offapring]
if{irep.eq.1)then [Insert/atore both offapring]
call genrep{ip,phl,ph2,newph)
glas
call stdrep{irep,phl,ph2,0ldph,fitna,ifit,jfit)
endif [insertion/atorage completed]
20 continue
if{irep.eq.1) call newpop [Dff with their heada!]

10 comtinue

{For the purpose of this listing, the argument lists of most subroutines have been
truncated). The population size (np) and the mumber of generations through
which this population is to evolve (ngen) are both input parameters. Note that
each iteration of the inner loop {do 20) prodices twe offspring from two parents,
&0 that this loop needs to be executed only np/ 2 times In order to produce a new
generation of np individuals. This implies that the population size np must be
an evern number; if the user specifies an ocdd walue for np, PIKALA truncates it
to np—1, Issues a warning message, and proceeds with the run. Qne iteration of
the reproductive cycle entails choosing two parents {call aelect), and construct-
ing their respective chromosomes (gnl, gn2) from their corresponding phenotypes
{ph1, ph2). The crossover operator is then applied {call crosa) to the parent
chromosomes, and the mutation operator applied {call mutate) to each of the
two resilting offspring chromoscomes. The offspring chromosomes are then de-
coded into their corresponding phenotypes (call decode), and accumulated into

11

temporary storage {call genrep) or Inserted into the population {call atdrep),
depending on the adopted reproduction plan {controlled by the parameter irep;
more on this below). Under some reproduction plans, the new population is trans-
ferred from temporary storage to the main population array at the end of the
generational iteration {call newpop), with the old population being eliminated.

PIKAIA stores the population in the 2-D array oldph, of size nxnp, where n
is the mumber of parameters defining the function to be maximized. The column
oldph{1:n,i) corresponds to the i*" individual in the population. Many genetic
algorithm packapges store instead the population of strings {chromosomes); the
present cholce was motivated by the desire to simplify I/0, and facilitate any
postprocessing operation that the user may want to carry out.

3.3 Initial population

In order to avoid any bias at the beginning of the evelutionary run, each of the n
parameters defining each of the np individuals in the initial population is initialized
with a random number R € [(.0, 1.0]. PIKATA carries out this initialization n the
following manner:

do 1 ip=1,np [op individuala in population]
do 2 k=1,n [n parametera per individual]
oldph{k,ip)=urand{)} [Random initialization]
2 continue
fitna{ip) = ff{n,cldph{l,ip)) [compute fitneas]
1 continue
call rokpop{np,fitna,ifit,jfit) [Rank populaticn 1

where the function urand{} returns a uniformly distributed random real mimher
R € [0.0,1.0]. The fitness is then caleulated for each individual phenotype {a
column 1:n in the population matrix oldph), and stored in the 1-D array fitna.
In view of this random initialization process, most individuals will typically end
up with very low fitness, but the fict remains that some will be better {or perhaps
more accurately, not as bad) as others. This is all that is required for natural
selection to operate, since it simply favors above-average individiuals, even if the
average is actually really pathetic on an absclute scale. Fwolution makes use of
whatever material it has at its disposal. Eemember, evolution is blind; evolution
simply prodices better-than-average Individuals.

The call to subroutine rnkpop returns the two 1-D integer ranking arrays ifit
and jfit. These are used internally by PIKAIA to keep track of where individuals
are stored the population matrix.

12
3.4 Selection technique

PIKATA uses a stochastic (as opposed to deterministic) sampling mechanism to
select both parents in one iteration of the reproductive cycle. The selection pro-
cedure is such that the prebeblity of an individual being selected for breeding is
proportional to that individual's fitness,

3.4.1 The rmilette wheel algorithm

Let §; be the fitness of individual 4. First compute the sum of all fitness values in
the population,

np
F=3"5, (3.2)
i=1
and define a running sum
J
Tj=3 5, F=1,.,0p (3.9)
i=1

clearly Tj41 > T;¥J, and T, = F. Now generate a random number R € [0.0, F],
and locate the element T; for which

T, 1 <R<T (3.4)

In view of eq. (3.3), for a given walue of R this condition can be satisfied for one
and only cne j; the corresponding individual is the one selected for breeding, Note
that this procedure regréres the fitness § (as returned by the user-supplied fitness
function) to be a positive definite quantity.

While it may not be cbvicus at first glance, this procedure is equivalent to
constricting a rowlette wheel where each individual is assigned a sector of anguilar
dimension {2n) 1 x 5;/F, and the praduction of the random number is equivalent
to spinning the wheel. The probability of the wheel stopping in sector § is clearly
proportional to the angular extent of that sector, and thus to the (normalized)
fitness of individual j. This procedure is accordingly known as the Howletle Wheel
Algorithm. It is the only sampling mechanism available in PTKATA. For a discussion
of other possible sampling mechanisms see chap. 4 of Goldberg {1984) or §4.1 of
Michalewicz (1994), and references therein.

3.4.2 Ranking ax fitness

Directly using fitness as a measure of breeding probability suffers from a mimber
of shortcomings (as discussed for example in Goldberg 1989, chap. J; Davis 1641,

13

chap. 3), but these can be overcome in a number of ways. In a nutshell, the aim is
to ensure that a suitable fitness differential be maintained across the population
throughout the evolutionary run. In the language of biclogy, seleriion pressure
must be continually enforced for ewvolution to proceed. To achieve this effect,
PIKATA makes use of a strategy known as ronking.

Assipn to each individual a rank r; based on its fitness 5;. By convention let
r =1 correspond to the fittest individual, and + = np to the least fit. Then define
a relative fitness §° in terms of this rank:

—r+1
§; = Tt (3.5)
np

{(note that §; € [0,1] by construction). This relative fitness is then used as a
measure of selection probability in the roulette wheel algorithm described above,
n place of the true fitness §;. In this way, a constant fitness differential is imposed
across the population; this is most easily seen upon noting that the ratio of relative
Btnesses for the best to second best Individual in the population is always equal
to [best:second] = [op:{np — 1)], the [best:median| ratio to [2:1], the [best:worst]
ratio to [np:1], and so on, indeperdently of the actual distrebution of fitness values.

3.4.3 Selection pressire

The ranking scheme described in §3.4.2 amounts to imposing a linear relationship
between relative fitness and rank, with unit slope. This choice is clearly not 1imique.
Consider instead the more general linear relationship:

‘r)y=b-m| — b2 0; :

§'{r) m(np), m, b > 0; (3.6)

the ratio [best:worst] of normalized fitness becomes
Sy bh—m/np
5 h=m

{(3.7)

Clearly the slope m is a measure of selection pressure. PIKATA makes use of
a modified representation of eq. {3.6) to define the relative fitness (= selection
probability) as:

§'(r) = (£dif + 1){op + 1) — 2r x £dif, {3.8)

wherae

0.0 < £dif < 1.0 {(3.9)

s equivalent to the slope m In the above linear relationship. Equations (3.6)
and {3.8) are actually equivalent up to a normalization factor chosen such that

14

0.0E0

0.015

d.014

=)

0,005

Q.000 L] M BT M I

W] 20 40 G0 a0 1440
Eanl

Figure 3.1: Variation of the normalized fitness §' as a function of rank r, for
various values of the fitness differential parameter fdif. The choice fdif=1 cor-
responds to standard ranking, as discussed in §3.4.2.

F =3%"8"=1. Note that the limit fdif — { returns the same normalized fitness
&' = 1/np for every individual, independently of their rank. This corresponds to a
situation where selection pressure is actually nil. The limit fdif— 1, on the other
hand, yields the standard ranking scheme described in §3.4.2. Figure 3.1 shows a
few 5 vs r curves computed for four different values of the fitness differential £dif.
While strong selection pressure (i.e., £dif— 1) is generally to be preferred, there
are situations in which a weaker selection pressure can help to prevent premature
COTLVETERTLCE.

Subroutine select incorporates this ranking strategy with adjustable fitness
differential directly within the rank-based roulette wheel algorithm:

aubroutine select{np, jfit,fdif,idad)

npl = npt+l
dice = urand{)+np#npl [faitea woa jeux...]
rtfit = 0.
do 1 i=1,np [thia im the running sum]

rtfit=rtfit+npl+fdif+«{npl-2#jfit{i)) [compute relative
if {rtfit.ge.dice) then fitneas on the fly]

15

idad=i [a parent has been found]
goto 2 [...a0 no need to contimue]
endif

1 continue
2 return

The fitness differential parameter fdif is an input quantity in PIKATA, and is held
constant for the duration of the evolutionary rumn.

3.5 Encoding and decoding

The encoding, process prodices, for each selected parent, a chromosome-like stric-
ture that will subsequently be used for breeding through the action of the varicus
penetic operators to be discussed further below. The complementary process of
decoding is the equivalent of development and growth in biclogy, i.e., the recon-
struction of an individual from its defining genetic material.

More pragmatically, the aim of the encoding process is to produce a “chromo-
some” from the n parameters defining the function f{x) to be maximized. Write
these as

x = {71, T2, ...Tn). {3.10)

PIKAIA encodes these parameters using a decimal alphabet, namely the simple
1-digit base 10 integers®. Schematically,

Tp £ [ﬂ{], lﬂ] — .Xk = {-Xl! .Xz, ---1-Xnd:|k! {311:!
where the X; € [{),§] are positive integers. The encoding algorithm is simply:

X; =mad{107 3+ g, 10), §=1,2,..,nd, {3.12)

1 Many public-domain genetic algorithms make use of binary encoding, and
some practitioners believe that a binary representation is inherently superior,
while empirical evidence suggests that other encoding schemes do at least as well
on many classes of problems (see for example Wright 1691; Michalewicz 1964,
chap. 5). The present choice was in part motivated by the fact that manipulation
of binary strings is not at all easy to implement in a platform-independent manner
m standard FORTRAN-Y7. Cme may also recall that all known life forms, with
the exception of some classes of viruses, are encoded in base four, the digits being
the nucleotide bases Adenine, Quanine, Cytosine, and Thymine. Remember your
high school biology...

16

where the function mod({z,) returns the remainder of the division of x by .
Each of the n defining parameters thus becomes a sequence of nd 1-digit integers,
&0 that the encoding of all n parameters to nd significant digits produces a 1-D
integer array {(or “chromosome”) of length nxnd. Each element of this array can
be thought of as a “gene” having 10 possible alleles. For each encoded parameter,
the complementary decoding process is simply

1 & .
=1

These two operations are carried out by the subroutines encode and decode:

subroutine encode{n,nd,ph,gn) [ph=phenctype, gn=genotype]

z=10.+%nd
ii=0
do 1 i=1,n [n parametera to encode]
ip=int {ph{i)*z) [convert to integer]
do 2 j=nd,1,-1 [nd genea per parameter]
gn{ii+j)=mod{ip,10) [extract gene]
ip=ip/10
2 continue
ii=ii+nd [next block of nd genes]
1 conmtinue
subroutine decode{n,nd,gn,ph) [gn=genoctype, ph=phenoctype]
z=10.#%{-nd)
ii=0
do 1 i=1,n [n parametera to decode]
ip=0
do 2 j=1,nd [nd gensa per parameter]
ip=10+iptgn{ii+j) [aum the nd contributicma]
2 continue
phi{i)=ip*z [i th parameter now decoded]
ii=ii+nd [next block of nd genes]

1 continue

Note that for efficiency reasons, these two subroutines are not direct transcriptions
of egs. (3.12) and (3.13) above, but one may easily verify that they are equivalent.

Consider the task of maximizing a function f{z,y) of two wariables, as in
the test-prohlem used as installation chedk in 52.2. In this case an individual

17

{or “phenotype™) is a point {z,y) in 2-D parameter space. The encoding process
wolld produce

(z, ¥) = (0.34567890,0.23456789) — 3456789023456789

for nd=8. The chromosome 3456789023456789 s made up 1§ penes, and is the
full genotype of the phenotype (#, %). The number of digits retained in the encod-
ing/decoding, nd, is an input quantity that remains fixed throughout the rmn.

3.8 The crossover operator

The crossover operator Is, in essence, what distingnishes genetic algorithms from
other heuristic search techniques. PIKATA incorporates a single crossover operator
known as one-point crossover. This operator acts on a peér of parent-chromosomes
to produce a peér of offspring-chromoesomes. Consider again two prototypical “par-
ents” for the test-problem of §2.2:

(7, 7)1 =(0. 3456 7860,0. 23456 788)
(7, 77)2=(0.87654321,0.65432168)

Encoding to eight significant digits {(nd=8) would produce the corresponding parent-

chromosomnes:

34587890234587859
876b432165432108

The crossover operation begins by randomly selecting a cutting point along the
chromosomes, for example by generating a random integer K €[l,nxnd], and
cutting hoth parent chromosomes at the corresponding locus. For example, for
K =10(:

346678902345 6788
878543218543 21089

345878802 | 3458789
876543216 | 5432108

18

The chromosomal fragments located right of the cutting point are then inter-
chanpged and coneatenated to the frapgments left of the cutting pointa:

345678802 | 5432109 - 34LE5739025432108
876543216 | 3458789 - 8765432163458785

The two strings resulting from this operation are the offspring chromosomes. These
two chromosomes decode into the two offspring phenotypes:

(w1, 7)=(0.34567850,0.25432198)
(%2, 12)=(0.87654321,0.63456789)

The resulting offspring in general differ from either parent, although they do in-
corporate intact “chunks” of penetic material from each parent.

In practice the crossover operator is applied only if a probahilistic test yields
true. Define first a crossover rate pcrosa € [(.0,1.0], and generate a random
number K € [0.0,1.0]. The crossover operator is then applied only if R <pcroas.
If R »>pcroasa, the two offspring remain exact copies of the two parents.

The crossover operation, including the probability test, is carried out In sub-
routine croaa:

subroutine cross{n,nd,pcrosa,gnl,egn2) [gnl are gn2 the
parent chromosomes]

if {urand{).lt.pcroaa) then [probability test]

ispl=int{urand{)+n+nd)+1 [choome cutting poinmt]

do 10 i=iapl,n*nd [exchange genea located
t=gn2{i) right of the cutting
gn2{i)=gni{i) point, directly imto

gnl{i)=t parent chromosomes]

10 continue [gnl and gn2 are now the

endif offapring chromoacmes]

The crossover rate peross is an input quantity, and remains constant throughout
the evolution.

3.7 The mutation operator
PIKAIA incorporates a single mtation operator known as uniform one-potnt mn-

tetzon, but allows the mutation rate to vary dynamically in the course of the
evolutionary rumn.

19

3.7.1 Uniform mifafion

The nmtation operator functions as follows. For esch gene of an offspring chro-
mosome, a random mimber R € [0.0, 1.0] is generated, and mutation hits the gene
cnly if R < pmut, where pmut € [(.0, 1.0] is the mutation rate. The mutation itself
consists in replacing the targeted gene by a random integer K € [0, §]. These
operations are carried out in subroutine mutate:

subroutine mutate{n,nd,pmut,zn) [gn ias a chromosome]
do 10 i=1,n#*nd [n#nd gene to test]
if {urand{).lt.pmut} then [probability teat]
gn{i)=int {urand {}+10.) [mtation hitting genme i]

endif

10 comtinue

(Cme may note that even though the mutation operator acts uniformly on the
genotype, its phenotypic effects can vary by orders of mapgnitude, depending on the
gene being affected. An important feature of the crossover and mutation op erators
is that they preserve the parameter bounds imposed by the encoding/decoding
process. In other words, applying these two operators to chromosomes enceding
parameters {7z} € [0.0,1.0] can only produce offspring chromosomes encoding
parameters bounded in the same interval.

3.7.2 Dynamic adjustment of the mmitation rafe

The action of the mutation operator has hoth deletericus and heneficial effects.
It can destroy a potentially superior offspring produced by the crossing of two
above-average parents, yet it is required to preserve variability in the population
and is often the only mechanism awailable to save the day if premature convergence
on A secondary extremum were to occcur. Experience shows that the choice of an
optimal vahie of the mutation rate pmut is very problem-dependent, and in general
cannot be made g prior:.

PIKAIA can monitor the depree of convergence in the population, and ad-
just the mutation rate accordingly. Using the true fitness § (as opposed to the
normalized fitness §') of the best and median individuals, define the quantity

_ S{r =1)— 8{(r =np/2)
S{r =1)+ §{(r =np/2)

AS (3.14)

as a measure of the degree of convergence of the population. The mutation rate is
increased (lowered) whenever this quantity is smaller (larger) than a predetermined
level. This is carried out in subroutine adjmut:

20

aubroutine adjmut{np,fitna,ifit ,pmutmn,pmutnz ,pmut)
parameter {rdiflo=0.0&6, rdifhi=0.25, delta=1.5)
rdif=aba{fitna{ifit{np))-fitna{ifit{np/2))) [compute normalized

+ /{fitna{ifit {np))+fitna{ifit{np/2))) apread in fitneaa]
if{rdif.le.rdiflo)then [increase pmut]
pmt=min{pmtmnx, pput+delta)
glae if{rdif.ge.rdifhi)then [decrease pmut]
pmt=max{pmtmn,pmt/delta)
endif

pmutmx and pmutmn are upper and lower bounds, respectively, to the allowed
range of mmtation rates. The parameters rdiflo and rdifhi are the upper and
lower critical walues of AS at which the adjustment process is activated. As long
as rdiflo < AS < rdifhi, the mutation rate pmut remains equal to its input
value. Whenever AS <rdifle {AS > rdifhi), the mmitation rate is Increased
{decreased) by a nmiltiplicative factor delta.

The mutation rate (pmut) is an nput quantity. If a variable nmtation rate is
used, then the upper {(pmutmx) and lower (pmutmn) bounds on the allowed range of
mutation rates must also be provided as input quantities. PIKATA then updates the
mtation rate at the end of each pemerational iteration, through a call to subroutine
adjmut. Note that the limits rdifhi and rdiflo, as well as the Increment delta,
are constants set in a PARAMETER statement in subroutine ad jmut.

3.8 Reproduction plans

A reproduction plan controls the ways in which newly bred individuals are to be
incorporated in the population. PIKATA operates on a fixed popilation size, and
offers a cholce of three reproduction plans:

3.8.1 Full penerational replacerent

This is perhaps the simplest reproduction plan. Threughout one iteration of the
generation cycle, offspring are accumulated in temporary storage (by siccessive
calls to subroutine genrep). Qnee np offspring have been so produced and stored,
the entire parent pophlation is wiped out and replaced by the offspring population
{by a single call to subroutine newpop), after which a new generational iteration
begins. Bubroutine nevpop also computes the fitnesses for the members of the new
population, and computes their respective ranks. Jnder this reproduction plan,
mdividuals have a fixed lifetime equal to a single generation

21

3.8.2 Steady-state plans

Steady-state reproduction plans insert individuals as they are being bred. Criteria
mst he specified to decide

{1) under which conditions newly-bred offspring are to be nserted,

{2) how members of the parent popilation are to be deleted to make room for
the new members, and

{3) if any limit is to be imposed on an individual’s lifetime.

PIKAIA incorporates two steady-state plans. In both cases a newly bred offspring
is inserted whenever its fitness exceeds that of the least fit member of the par-
ent population, unless it is identical to an existing member of the population?.
Furthermore, PIKATA imposes no limit on the generational lifetime of a popula-
tion member; a very £t individual can survive through many iterations of the
generational cycle. The two plans differ in how room is made to accommodate
the offspring to be inserted. Under the stendy-stote-delete-worst plan, the least fit
member of the parent population is eliminated and replaced by the offspring. 1In-
der the sterdy-stele-deleie-random plan, a member of the cld population is chosen
at random and deleted, independently of its ftness.

The insertion and deletion steps are carried out in subroutine atdrep for both
steady-state plans. Note that PIKATA internally defines a penerational iteration
as the production of np individuals, iIndependently of how many actually end up
being inserted in the population. Under steady-state plans, a sipnificant amoeount
of bookkeeping is required to update the ranking arrays as new individuals are
being inserted. This bookkeeping makes subroutine atdrep look more intricate
than it really is; the alternative would have been to recompute all ranks every
single time a new individual is inserted, but this appeared overly wasteful, even
givern our advocated preference for clarity over efficiency.

3.5.3 Select- Random-Delefe- Worst plan

Cme interesting class of steady-state reproduction plans picks parents com-
pletely at random, with natural selection enforeced In making room for new off-
spring: the probability of being targeted for termination is made énversely propor-

2 This “no-duplicate” criterion is an important safeguard against inhreeding. It
s particularly important under steady-state plans, since a very fit parent breeding
without crossover or mutation —a possible cccurrence if peroas< 1.0 and pmot<
1.0— would lead to the insertion of a copy of itself in the population, after which
breeding with that copy —a likely occurrence if the phenotype is very fit— could
produce two new identical copies even if crossover wereg to goonr. It's all downhill
from there omn...

22

tional to fitness. This strategy has been found advantageous for large problems
tending to exhibit premature convergence (see, e.g., Cedefio et al. 1994). It turns
out that one extreme version of such reproduction plan is effectively already built
in PIKAIA; a select-random-delete-worst reproduction plan can be produced by
running PIKATA with fdif={] —vanishing selection pressure— under the steady-
state-delete-worst reprodiction plan {(irep=3).

Clearly a number of alternate steady-state plans can be construed. The three
reprodiction plans available in PTKATA, including the select-randem-delete-worst
variant described here, represents a good sampling of the range of possibilities.

The cheice of a reproduction plan is controlled by the input parameter irep.
The choice irep= 1 enforces full generational replacement, irep= 2 steady-state-
delete-random, and irep= J steady-state deleteworst. PIKATA does not permit
switching from one reproduction plan to another during the evelution.

3.9 Elitism

In view of the disruptive effects of the crossover and mutation operators, the possi-
bility exists that the genotype of the fittest individial will not be passed on intact
to the next generation. Cmly under the steady-state-delete-worst reproduction
plan is the fittest guaranteed to survive. The stratepy known as elitism alleviates
this potential chstacle to efficient convergence.

How the technique operates depends on the reproduction plan being used.
Under full generational replacement, the technique consists In simply saving in
temporary storage the fittest individual of the parent population, and artificially
reinserting it at the end of the generaticnal teration. This procedure is carried
ot in subroutine newpop, a listing of which is now in order:

aubroutine newpop
+ {ff,ielite,ndim,n,np,cldph,newph,ifit, jfit,fitna,nnew)
if{ielite.eq.1 .and. ff{n,newph{1,1)).1t.fitna{ifit{np)))then

do 1 k=1,n [reinaert fitteat of
newph{k,1)=oldph{k,ifit{np)) previous generation]
i continue

nnew = mnew-1
andif
do 2 i=1,np [off with their heada!]
do 3 k=1,n
oldph(k,i)=neuph{k,i)
) continue
fitna{i)=ff{n,oldph{1,i)) [compute fitneas]

23

2 continue
call rokpop{np,fitna,ifit,jfit) [rank new population]

The protected individual is (arbitrarily) inserted in the first column of the pop-
aticn matrix oldph, unless it just so happens that the generational iteration
has produced a first offspring that is actually fitter than the fittest one from the
previous generation; in this case Insertion of the protected offspring is simply not
carried out.

Under steady-state-delete-random, the use of elitism artificially protects the
fittest member of the population against random deletion. Elitism is not required
under steady-state-delete-worst, as this plan effectively corresponds to a general-
ized and rather extreme form of elitism.

The use of elitism Is controlled by the input parameter ielite. Elitism is ei-
ther on {(ielite= 1) or off (ielite= () for the entire duration of the evolutionary
L.

24

25

4. USING PIKATA

4.1 Calling sequence
The calling sequence for PIKATA is
call PIKAIA{funk,n,ctrl,zb,fb,atatua)

Tunk is the name of a usersupplied external function to be maximized, and n is
the parameter space dimension, i.e., the number of adjustable parameters in funk.
The maximmim allowed size for n is set in a4 PARAMETER statement. within PTKATA,
and is equal to 32 in the source code. Ideally, the user shonld set this value equal to
the largest expected problem size, it no larger, so that PIKATA does not defines
its internal arrays larger than necessary (FORTRAN-77 lacks dynamic storage
allocation).

4.2 Tnput/Output

The Hoating point array ctrl has length 12, and contains faps and parameter
walues that control PIKATA's evohitionary behavior; a detailed description of each
element of ctrl is given below.

The array b and scalars fb and statua are the only cutput returned by
PIKAIA. The feating point array zb has length n, and contains the parameters
defining the best solution found by PIKAIA at the end of the evelutionary run.
The scalar £b is the corresponding fitness, as would be returned by funk with
xb as arpument. As its name implies, the output variable status contains, upon
return, a numerical value coding error conditions or successfil terminaticn

4.3 Fitness fonction

The function funk to be maximized must be declared as REAL and EXTERNAL in the
calling program. funk mnst accept as argument a single integer n {the dimension of
parameter space) and a single Acating point array of length n (a point in parameter
space):

24

real function funk{n,x}
dimenaion ={n)

The ewluation of funk mnst return a positive-definite quantity that measures
fitness (high/low values = high/low fitnesses, goodness of fit, etc.). Recall that
PIKATA searches a bounded nondimensional search space spanning the range [0.0,1.0]
in all n dimensions of parameter space. funk mnst conseguently carry ont inder-
nelly all epproprigte scolings of dimensional veriebles. Likewise, all wlues in the
“hest phenotype”™ array zb returned hy PIKATA upon successful termination (ata-
tus=0) are in the range [0.0,1.0] and so nmist be rescaled to dimensional values in
the same way.

4.4 Internal safety checks and Error /Warning messages

PIKAIA first calls subroutine astetl to perform a minimal set of run-time tests on
its input parameters. I any element of the control vector ctrl is negeiwe, then
PIKATA will supply its own default value(s) for the corresponding parameter(s).
If any invalid but positive wlues are supplied, PIKAIA aborts and returns with
a positive {non-zero) value for the status cutput variable. The actual walue
& equal to the iIndex of the input vector ctrl containing an illegal value for the
corresponding control parameter {more on ctrl in §4.5 below). PIKATA also verifies
that the population size specified on input is an even number; if not, the population
size is reduced by one and a warning message issued.

Cme or many warning messages will also be lssued if some combinations of
parameter values, while formally legal, risk producing an ineficient algorithm. It is
Important to realize that only a very basic set of such tests i1s carried out, as optimal
parameter settings are always to some extent a function of the problem under
consideration. Consequently, it is impossible to guarantee that all potentially
nefficient combinations of parameters will elicit a warning from PIKATA.

Upon successful termination PIKATLA returns with atatua={). Additicnal run-
time information can be routed to standard output by choosing appropriate set-
tings for the control fag ivrb, as described below.

4.5 The input conirol vector ctrl

Internally, PIKATA associates the control vector ctrl to the following flags and
parameters:
ctrl{l: 12) =

{np, ngen, nd, pcross, imut, pmut, pmutmn, pnutmx, £dif, irep, ielite, ivrb)

27

These correspond to the following:

Populetion number [op (=ctrl{l)); default is np=100; see §3.2]: The number of
mdividuals in the population. Note that this remains constant throughout the
run. The population size is internally restricted to np< 512 and should be an even
mruber.

Number of Gererations [ngen {=ctrl(2)); default is ngen=500; see §3.2): PIKATA
evolves the population over a predetermined mimber of generations set by the
value of the parameter ngen, instead of trying to meet A preset tolerance criterion.
The latter approach is potentially dangercus when approaching a new problem, in
view of the usual convergence trends exhibited by (GA-based optimizers {more on
this below).

Froding ecenracy [nd {(=ctrl{3)); defiilt is nd=5; see §3.5]: This sets the mumber
of digits retained in encoding the phenotype inte a genotype. This is internally
restricted to nd< 6 (the typical 32-bit floating point accuracy is only § or 7 decimal
places); in most real applications, if more than 4 digits of accuracy are required it
wolld generally be preferable to use a 4 digit-accurate genetic sohition as a starting
guess for a more conventional optimization method. Recall that the penotype ends
up being an integer array of length n#nd, where each element (“gene™) takes vahies
in the range [0, 9]. The encoding scheme used in PIKATA is clearly far from optimal
n terms of efficient use of storage, but it is easy to code, understand, modify, and
keep track of when something goes wrong.

Crossover rate [pcrosa (=ctrl{4)); default is pcroas=0.85; see §3.6]: Once two
parents have been selected for breeding, a random number R € [(.0, 1.0] is gener-
ated, and the crossover operation is applied only if R <pcroaa.

Mutetion mode [imt{=ctrl(5)); default & imut=2; see §3.7]: Integer flag con-
trolling the behavior of the mutation operator. Setting imut=1 enforces a constant
mutation rate, at a value set by pmut (see below). For imut=2, the mutation rate
varies in the range [ponutmn, pmutmx] throughout the evolution, with starting walue
pmut. The mutation rate increases {decreases) only when the relative difference in
the absolute fitnesses of the best and median member of the population falls below
{exceeds) the value rdiflo {(rdifhi). The mutation is varied by logarithmically
constant increments delta, i.e. pmut«pmut+delta (pmut/delta). The vahies
rdiflo=0. 06, rdifhi=0.25 and delta=1.5 are set in a PARAMETER statement in
sibroutine adjmut, inspection of which should further clarify how the variable
mitation rate is implemented. Depending on the fitness contrast in parameter
space, the user may wish to adjust the values of rdifhi and rdiflo.

Initial mutelion rele [pout (=ctrl{6)); default is pmut=0.005; see §3.Y]: By
convention, the value of pmut corresponds to the probability (< 1) that a given

28

gene be affected by a mutation at breeding. For every gene a random number
R € [0.0,1.0] is generated, and mnitation is carried out only if K <pmut. The
mutation itself consists In generating a random integer K € [(),§], and resetting
the pene valie to K note that there is 1 in 10 chance that K will be equal to the
criginal gene value, in which case mutation has effectively no phenotypic effect.

Mindmum mudetion rete [pmutmon (=ctrl{7}); used only if imut=2; default is
poutmn=0.0001; see §3.7.2: Minimim mutation rate attainable under variable
mnitation mode.

Mezimum mutgtion rete [pmutmx (=ctrl{8)); used only if imut=2; defmilt is
poutmx=0. 1; see §3.7.2]: Maximum mutation rate attainable under variable mu-
tation mode. Typically, pmut and/or pmutme must be nmich smaller than unity,
otherwise near complete randomization is likely to occur in every offspring. TInder
full generational replacement {see reproduction plens below) and unless elitism has
been turned on {by setting ielite=1), PIKATA will issues warnings if pmut.>>(.05,
or if imut=2 and pmutmx>>(.05.

Fitness differentinl [fdif (=ctrl(9)); default s fdif=1.0; see §3.4]: PIKAIA
makes use of ranking to assign ftness. Individuals are first ranked as [1, 2, ..., np],
according to “true” fitness, where by definition the fittest individual has rank 1 and
the least fit rank np. respectively. The breeding probability of the i individual
in the population is then defined as

1 fdif (1 _ 2% jfit{i})
np np np+1 '

where jEit{i) is the rank of the individual stored in the P column of the pop-
1ation array oldph, as described before. This defines a lnesr relationship with
slope fdif between rank and breeding probability. Nete in particular that setting
fdif=0.0 corresponds to no selection pressure (i.e., equal breeding probability for
every individual), while fdif=1.0 directly equates breeding probability to rank.
Unless irep=3 (see below and §3.8.3), PIKATA will issue a warning if £dif is set to
a value less than 1/3, which would correspond to a fitness differential too low for
most practical applications. All breeding probability calculations are carried out
nternally in subroutine select.

Reproduction plans [irep (=ctrl{10)); default is irep=1; see §3.8]: Integer flag
controlling the choice of either one of the three available reproductive plans, Set-
ting irep=1 selects full generational replacement (§3.8.1), and irep=2 or irep=3
steady-state reproduction (§3.8.2). In these latter cases an offspring is nserted
only if (1) its fitness is superior to that of the lesst fit population member, and {2)

29

its penotype differs in at least one gene from any genotype already present in the
popidation. The two steady-state reproduction plans differ only in how individuals
from the old population are deleted to make room for new offspring fit encugh for
insertion; under irep=3, the least fit is deleted (steady-state-delete-worst plan). If
on the other hand irep=2, an individual from the old population is chosen at ran-
dom and deleted, independently of its actual fitness {steady-state-deleterandom
plan). When operating under a steady-state reproduction plan, a “generation”
s not a well-defined concept. Internally, PIKATA defines a generation as a group
of np individuals. Ome should note, in particular, that if a user-supplied cutput
sitbroutine is inserted within the generation loop in PIKATA (see §6.2 below), this
roattine will be called onece every time np individuals have been bred, independently
of how many of them have actually been inserted in the population. Likewise, the
mutation rate s adjusted (imder imut=2) only once at the end of each genera-
tional iteration. As arie of thumb, going from irep=1 through irep=2 to irep=3
with fdif fixed represents, to some extent, a transition from enhanced ezploreiion
to enhanced ezplodetion (for fixed selection pressure), but neither plan seems to
be clearly superior to the others In a general sense (see, e.g., Syswerda 1591). All
reproduction plans operate under the assumption of a fixed-sized population, and
make use of the roulette wheel algorithm for parent selection (see §3.4 herein; alko
chap. 1 of Davis 19§1).

Elitism [ielite (=ctrl{11)}); default is ielite=1; see §3.9]: inteper flag control-
Ling the use of elitism. Elitism is enforeed if ielite=1, otherwise no action is
taken. Under irep=2, setting ielite=1 ensures that the fittest individual cannot
be selected for random deletion. This flag has no effect under irep=3 (steady-
state-delete-worst reprodiction plan).

Verbose mode [irvb {=ctrl{12)); default is ivrb=0|: integer flag controlling the
generation of additional rin-time standard output. Betting ivrb=1 or ivrb=2 gen-
erates a listing of input parameters, as well as Information concerning the current
status of the population. The latter output is penerated by subroutine report.
The first line of cutput generated by report contains (1) the generation count,
{2) the number of individuals inserted in the last round of breeding activity, {(3)
the fitnesses of the best, second and median individuals in the current popula-
tion. This is followed by n lines listing the phenotypes for the best, second and
median individuals. The following is part of the cutput produced by running the
installation check test problem with ivrb=1:

28 g8 0.111111 0.9728997 0.851311 0.545382
ROETE 40386 30042
49914 bb44] TEDZ0

30

This was produced at the end of the 26 generational iteration; 99 individuals
have been inserted (not 100, because elitism is used), and the current mutation rate
s pmut= (.111111. The best individual & (z, y) = (0.506786, 0.49914), for which
F{z, 1) = 0.9720997. The second and median individual have F{0.40386, (0.55441) =
(.851311 and F{0.30042,0.75020) = 0.545382, respectively. Under ivrb=2 this
information is printed at every peneration. Under ivrb=1 it is printed only if
gither (1) the mutation rate has been adjusted (under imt=2), or {2} the fitness
of the best individual has improved since the last generation (under irep=1) or
pseudogeneration (under irep=2 or irep=3).

Whenever an element of the control vector ctrl is set to a negative value on
mput, PIKATA will use its default values for the corresponding control parameter.
All defanlt values are set by a PARAMETER statement in subroutine aslect. The
following Table summarizes the allowed and defanlt vahies of the input parameters
contained in the control vector ctrl:

Table I
Elements of input contral vector

Element Internal Type Legal Default Note
variable values values

1 np integer < 128 100 1

2 ngen integer < X0 00 1

3 nd integer <8] 1

4 pcroas real (0.0 <pcross <140 (.85 2

D imut integer 1,2 2

g pmut real 0.0 < pmt < 1.0 0.005 2

T pmu tmn real 0.0 <pmutmn < 1.0 §.0005 2

8 pmutmx real 0.0 <pmtmx <10 (.25 2

g fdif real 0.0 < £dif < 1.0 1.0 2

10 irep integer 1,2, 3 1

11 ielite integer 0,1 1

12 ivrb integer 0,1,2 {

Notes:

1= Maximmim valhie set internally by a parameter statement within PIKATA
2= Bome values, while formally legal, can produce an inefficient algorithm; see
main text.

41

4.8 Additional User-snpplied functions and snbroutines

4.6.1 Random number generafor

PIKAIA requires a random number generator function that returns random or
peelldo-random deviates from a uniformly distributed sequence in the interwal
[0.0,1.0]. This function mmust be called urand and must be declared and called
without arguments, i.e., function urand{), r=urand{), and soc on. Any required
nitialization of urand should also be carried out by the calling program. The use
of peneric system-supplied random number generators is rot recommended.

PIKAIA is distributed with a simple random mumber generator based on the
“minimal standard” Lehmer multiplicative linear congruential penerator of Park
and Miller {1988). This is essentially identical to the random mimber generator
ran0 of Press et el (1892, §7.1), but Park and Miller's revised multiplier {Park,
Miller, and Stodkmeyer, 1593) is used. We chose the Park-Miller generator becanse
of its simplicity and portability: for a given aeed walue, it will produce the same
sequence of uniform random deviates (to within foating point precision differences)
on any machine with 32-bit integer arithmetic.

Ome of the beauties of penetic alporithms is that in contrast to Monte Carlo
methods, they are inherently robust with respect to the choice of random nmumber
generator. That is, the search space Is not restricted to the finite sequence of ran-
dom deviates supplied by the random number penerator; the search space consists
of the essentially infinite {up to the machine's floating point precision) set of all
combinations and permutations of the “penes” decoded from the random deviates
used to construct the initial population {cf §3.3).

In view of this inherent robustness, we chose to make one short cut in the
use of our randem mumber generator which one wold definitely not want to make
with Monte Carlo methods: we use the same sequence of random deviates in all
calls, independently of where in the code those calls originate, The theory which
establishes the favorable characteristics of a particular random number generator
applies of course only to the full sequence of deviates, Thus In order to guarantee
those favorable characteristics at any one invocation of the random rmmmber gener-
ator, one must ensure that that sequence is not used (i.e., diverted) anywhere else
in the same program. In principle each invocation of the random number generator
should maintain its own seed variable {e.g., using Fortran’s SAVE statement). We
do not do this in PIKATA. For simplicity of coding we always use calls to urand{)
with no seed; the random number generator is initialized once at the beginning of
a run {with a seed supplied by the user), and all subsequent calls draw from the
same single sequence of random deviates. Again, in an important production code
we wolld probably, just for comfort's sake, use a better random muimber generator

32

{such as Press et al.'s ran2 subroutine) and we would use a separate sequence for
each invocation. However, based on our experience to date with the use of PIKATA,
we strongly suspect that such Improvements woild make no noticeable difference
n eode performance whatsoever.

Listings of our random number generator ran0, initialization subreatine rninit,
and interface urand are provided in §A.2 of the Appendix.

4.6.2 Banking subrovfine

The user must supply a subroutine that accepts as input a floating point array
arrin of length n, and return an inteper array indx of identical length, where
element indx{i) is a key index giving the location in arrin of the it amallest
value in arrin (this is equivalent to the integer array ifit described above). This
sitbroutine is called only in subroutine rokpop.

PIKAIA is distributed with a ranking subroutine which uses the Quidksort al-
gorithm (Hoare, 1962). We use our own Implementation, based on Niklaus Wirth’s
quickaortl algorithm (Wirth, 1986), which is essentially identical to the subron-
tine indexx of Press et el. (1992, §8.4). A listing of owr rgasort subroutine is
provided in the Appendix, §A.2.

4.7 Efficiency considerations

The global structure of a properly designed genetic algorithm, as well as the varicus
operators and ecological strategies it incorporates, can be made essentially inde-
pendent of the actual problem being tackled. The only point of contact between
PIKAIA and a given problem is the computation of an individual's fitness, through
the usersupplied fitness function funk. The range of applicability of genetic algo-
rithm is consequently immense. As long as an unambiguous measure of fitness can
he constructed, PTKATA can he used to solve ary numerical optimization problem
without any significant alteration to the code. Which does not at all mean that it
should be; PIKATA can be used to invert a matrix, but this would likely yield the
most ineficient matrix Inversion method ever construed... Rule number one is, if
you already have something that works and works well enough, don't mess with
it! However, on problems where more conventional techniques fail, PIKAIA may
well produce an acceptable solution, given enongh time Genetic algorithm-based
optimizers do not require excessive amounts of memeory {no large matrices need to
be stored/inverted), but can be CPU-intensive, although in general a lot less than
Monte Carle or purely enumerative techniques.

34

— — =Simplex
[converged to secondary extremum]

Error {1-f)
T T IIIIIII
11 IIIIIII

PIEATA

8 Jimplex
1{:}_ 1 1 1 | I'l 1 1 1 | 1 1 1 |
O 20 40 80

generation /iteration

Figure 4.1: Convergence curves for the test problem of 2.2, For this maxdmiza-
tion problem the “target™ is f{z,y) = 1.0. The =olid line is a genetic solition
cbtained using PIKATA's defanlt settings. The dotted and dashed lines are two
representative curves obtained using the simplex method (see text). Note the
markedly different convergence behaviors.

4.7.1 Convergence rate and hybrid schemes

The solid line on Fig. 4.1 is a convergence curve for the installation test-problem
of 2.2, ohtained using PIKAIA's defanlt settings. The general shape of the con-
vergence curve —relatively low initial error as a consequence of sampling by a
popidation of trial selitions, followed by intermittent, abrupt lowering of the error
separated by periods of no apparent progress— is actually quite typical of the
behavior of the algorithm on more realistic problems. Moreover, this behavior
is markedly different from that associated with more conventional optimization
methods, such as for example conjugate pradient-based schemes; the first fow it-
erations of such schemes often do not produce a significant {or monotonic) drop
of the error, but subsequent iterations often see the error begin to decrease at a
fixed rate, which can often be estimated e priori

The simplezr method (Nelder & Mead, 1965; see also Press et ol. 1992, §10.4) is
a rather robust optimization method that does not require derivative computation.

34

Like many other optimization methods, it is prone to getting studk on secondary
extrema. The dotted and dashed lines on Fig. 4.1 are convergence curves for two
different solutions obtained using the simplex method. As advertised, the simplex
method sometimes gets stuck on secondary extrema (dashed line), but when it does
not {dotted line), it converges much faster than PIKATA. Figure 4.1 is actually quite
unfair to the simplex method, as 20 of its iterations require about as much CPU
time as a single peneraticnal iteration within PIKATA. However, repeated trials
with the simplex method reveal that for this test problem, the true maximum is
located only on 14 out of 100 trials {each trial differs in the location and size of
the initial simplex), as opposed to 100/100 for PIKATA running on defailt settings.
The simplex method is (relatively) fast, but local; PIKATA is slow, but global
There is no such thing as a free linch

The dichotomy “fast but lacal™ versus “slow bt global® can however be made
to work to one's advantage by combining both techniques. This may Invelve run-
ning PIKATA until ne improvement is made to the best individual in 10 generations
{say), and then use this individual to initialize the simplex method {or any other
method for that matter). Such a hybrid scheme combines the good exploratory
capabilities of genetic algorithms and the superior convergence behavior of other
methods In the vicinity of an extreroum. This will often represent the optimally
efficient 1se of PIKAIA when relatively high accuracy is required on real-life proh-
lerns.

4.7.2 Inifialization sibrovtine

Returning now to more pragmatic matters, examination of PIKAIA's top level
structure (§3.2) shows that the user-supplied fitness function funk will be called
at least npxngen times in the course of the evolutionary run. Experience shows
that in most real-life problems, the bulk of the CPU time is actually spent in
funk. It is consequently imperative that funk he coded in as efficient a manner
as possible. In particular, any secondary computation that s independent of the
himetion's arguments should be carried out once and for all before calling PIKAIA,
and the computed quantities passed to funk via one or more appropriately defined
COMMON block(s).

3b

5. EXAMPLES

The aim of this chapter is to provide detailed examples of the use of PIKATA
for solving a five optimization preblems of increasing levels of difficulty. In §h.1 we
revisit once again the installation check problem of §2.2. Section 5.2 shows how
to use PIKAIA to solve a straightforward linear least squares fit problem, and in
0.3 a more difficult non-linear least square fit problem is presented and varicus
aspects of its solution with PIKAIA are discussed in some detail. Section 5.4 covers
the traditionally much (much!) more difficult problem of distance regression, as
exemplified by the Infamous problem of fitting ellipses to a set of {z,y) data
where significant measurement errors exist in both & and y coordinates. Finally,
§h.h illustrate how to use PIKAIA to perform data modeling using peneralized,
rehust estimators that do not rely on a least squares formulation. Fxample driver
programs, fitness functions and synthetic data for these problems are provided as
part of PTIKATA's installation packape, and are listed in the Appendix below {(§A.4).
The chapter concludes with a warning concerning the use of the population of
solutions to construct error estimates (§5.6), and a few general comments regarding
the applicability of GA-based optimizers to other types of modeling problems
{85.7).

5.1 Maximizing a function of two variables

The installation check problem consisted in in locating the global maxinmm of a
multimodal function of two variable fz, %), In the sense of finding the schition
{z*, 4*) that returns the maximum evaluation of f{x,y). The test function of §2.2
is defined as

F{@, y) = cos®(nzr) exp(—r*/e?), (5.1a)

2= (z- 0.5+ (y-057 7y €[0.0,10] (5.1)

where n and ¢ are known constants. Figure 5.1 s a surface plot of this fune-
tion, for n = 9 and ¢2 = (.15. The global maximum is at {z* *) = {0.5,0.5),
with f{z*,%*) = 1.0. This global maximum is swrrounded by concentric rings of
socondary maxima, located at radial distances

e = {0.110192, 0. 220385, 0.330582, 0.440782, 0.550086}, (5.2)

36

n* u" t h tl' I
:w;:;:qau
i 111 11411 l.|||||||'|I

1 11‘1‘1‘1“1"I i '.

I|
tl1l||1||||111 '|'|'|||'||'I,|.|-"||| (i |
G |1111 il

ﬂ1 l

il Jlr[It

j
it J[,rlr
J'J'r i

i '|"l'

Figure 5.1: Two dimensional surface for the the installation check problem of
§2.2, defined by eq. (5.1) with n = § and ¢? = (.15. The global maximum is at
@, y") = (05,0.5), with f(z",57) =1.0.

from the central maximmum. Between these are located another series of concentric
rings corresponding to minima:

- m—Tlfi! m=12,.. (5.3)

The nnermost secondary maximum ring has f{x, %) = 0.95147; this ring is where
the installation check code sometimes remains stuck, because it only runs over 100
generations {cf. §2.2). The error associated with a given solution {,%) can be
defined as

£= 1= f(z,)| {5.4)

(Cme may note that the “peak”™ corresponding to the global maximum covers a
surface area ?rf-'-lnz in parameter space. If a hill cimbing scheme were used, the
probahility of a randomly chosen starting point landing close enough to this peak
for the method to locate the true global maxinmm is about 1% {this fgure would
decrease rapidly if egs. (5.1) were to be generalized to higher dimensions). This

37

seemingly simple global optimization problem would present formidable difficul-
ties for standard techniques such as alperithms based on the conjugate pradient
method, unless of course a very good puess at the solution were to be already
available. Figure 4.1 already illustrated the peossible pitfall associated with the use
of the simplex method (a relatively robust method, if only a bit slow compared to
most conjugate gradient-based methods): more often that not, the method gets
“stuck” somewhere on cne of the rings of secondary extrema.

The problem is easily handled by PIKATA. The search space has dimension
2 (n=2), and all the user needs to provide is a function that accepts as input
a vector of dimension two containing an (#,y) pair, and returns the function
evaluation corresponding to the RHS of eq. (5.1a) above. Since the optimization
task is simply to madmize f{z, %), the wlhe returned by f{z,y) can be used
directly as the measure of absolute fitness required to establish the ranks in the
population. The population itself consists of np pairs (x,%). Note that the search
space [x{(1)x{2)|= [#,y] is already bounded in [(,1] so that no rescaling of the
nput parameter is required. The corresponding user-supplied funection may lock
something like this:

function twod{m,x)
real ={n)

c Compute mample fitness function {(altitude in 2-d landacape)

implicit mone

integer @n,mn

real pi, sigma2, x{n), rr, twod
parameter {pi=3.14155926536,8igma2=0.15,0n=5)
if {x{1).gt.1..or.x{2).gt.1.) =top

rr=agrt{ {(0.5-x{1))*#2+ {(0.5-x{2))*+2)
twod=cos{rr+nn+pi) #+2 *cxp{-rT++2/aigmal)
return

end

A call to PIKATA, making use of default walues for all input parameters, would
then simply be
call pikaia{twed,n,ctrl,zb,fb,=atatusa)

with zb defined as being a real array of length 2 in the calling program and all
elements of ctrl initialized to some negative value. Recall that the function twoed

38

must be declared EXTERNAL by the calling program. An example of a complete
driver program for this problem is provided in the Appendix (§A.3).

It is instructive at this point to examine the performance of PIKAIA for dif-
ferent choices of evolutionary strategies. Table II below lists input parameters
settings that force PIKAIA to operate under the three different reproduction plans,
with or without elitism and wariable mutation rates. In all cases a population of
np= 100 individials evolved through ngen= 200 generations. Defanlt settings were
used for all other input parameters (perosa, pmut, etc.). Because of the inherently
stochastic elements present in the algorithm, sequences of 100 rins were computed
and averaged, so as to prodice results representative of the true performance of
the method. The average error (£) at the end of the 100 runs and the success rate
at localizing the central maximum are also listed in Table IL

Table II

Fun parameters and global performance for first example problem

Run ielite immt irep £ central max? note
PK1 @ 1 1 6.51 x 10-2 22/100

PK2 1 1 1 447 » 102 437100

PK3 1 2 1 5.96 x 108 1007100 1
PK4 1 p. 2 7.93 % 10—4 949/100

PK5 1 2 3 1.5G x 19~2 98/100

Note: 1= These correspond to PIKAIA's defanlt settings

Figure b.2 shows the average error £ associated with the best individual as a
fhinetion of generation count, for the five versions of PIKATA defined in Table IL
Perhaps the most striking message conveyed by Figure 5.2 is that verichle mu-
tetion 46 ¢ good thing (with the important caveat that it be used in conjunction
with elitism!). Figure 5.2 also seems to suggest that full generational replacement
{(version PK3) performs significantly better than either steady-state plans, every-
thing else being equal. Some care is warranted here. Any one rnin remaining stuck
on the first secondary maxima ring will result in an error of order 10~2 in the
100-run average, even if all other §9 runs are accurate to 10~% or better. This
s precisely what is happening here, as can be seen upon examining the fourth
and fifth colummns of Table II. Loosely speaking, the latter is a measure of global
performance. UInder variable mutation rate with elitism, all three reproduction

39

lﬂﬂ E | | | | E
-1 T
13 5 PKl 3
- PK2
o 107 3 =
1 2 E
T : PKS 1
o197 3L “_. PK4 =
b E]
Q L a
5 -]
ST g S E
1072 -
f PK3 i

1{}_6 1 1 1 1 I 1 1 1 1 I 1 1 1 I 1 1 1 1 I 1

G G0 1M 150 200

Generation

Figure 5.2: Performance of PIKAIA on the 2-D maximization problem of Fig. 5.1,
for different choices of “ecological” strategies and mutation modes, as listed in
Table IT. The error is defined in eq. (5.4), and is computed for the best individual
of a given peneration. Fach curve is actually a 100-run average, and so is fairly
representative of the performance of the algorithm under the different parameter
settings.

plans perform almost equally well, although one wouldn't Immediately think so
from a cursory glance at Fig. 5.2.

Further insight into the behavior of the method on the test problem can be
gained by examining the distribution of the popilation as a whole in parameter
space. This is carried out on Fig. 5.3, for the solution PK3 of Table IT and Figure
0.2, corresponding to PIKAIA's default settings. Fach pray dot corresponds to
one individual {a {z,) point in 2-D parameter space), and the larger black dot
& the fAttest individual of a given peneration. The concentric circles indicate
the crests of the rings of secondary maxima {cf. Fig. 5.1). The initial, random
population is distributed more or less uniformly in parameter space, but after
only § generations {part [B]) a definite clustering on the secondary maxima is
clearly apparent. By the tenth generation (part [C]) nearly all individuals are
concentrated either on the central peak or on the first local extremum ring. At

{A} [nitial Pupulatmn {EI]I 5*‘“ generatmn

Figure 5.3: Evolution of the population during the PK3 evolutionary run {cf Ta-
ble I and Fig. 5.2). Each dot corresponds to an individual, and the black dot to
the fittest individual of the given peneration. The absolute maxinmim is located at
{z=*, 4*) = {0.5,0.5), and the concentric rings indicate the crest of the secondary
extrema (see Fig. 5.1). The mutation rate begins increasing at the fifteenth genera-
tion, and is responsible for the development of the crosshair pattern so particularly
obvious on part {D).

41

that point the mmitation rate begins to increase; this produces the cross-hair pattern
soen on part {D). That increased mutation should produce this pattern is related
to the rather direct relationship between the parameters encoded in the penotype,
and their phenotypic representation; starting from a population clistered on the
central peak, mutations affecting a gene decoding into the first significant digits
of the # {y) parameter will produce a large horizontal (vertical) jump in schition
space. As the mutation rate is further increased (parts [E| and [F]), deviations
from the basic crosshair pattern become moere common, as the high mutation rate
makes it more likely for two mutations to affect simultanecusly the first significant
digits of both the & and y decoded sclution parameters. The use of elitism s
essemtial here, in order to continue improving the best solution. Notice how the
“best™ solution keeps improving from part {C) through (F), despites the fact that
the spatial distribution of the populaticn as a whole exhibits a greater spread
about the central peaks in later phase of the evolutionary rumn.

5.2 A linear least aquares ft

Data maodeling is perhaps the most common computational task in the experimen-
tal sciences. In general terms, one is given a set of “measurements™ f; carried out
at discrete set of “points™ 4;:

_fj = f{tj:l, =12 ..J {55}

with {one would hope) some estimate of the measurement error {s;) for the f;'s.
This could describae, for example, a time series of measurements. Consider now a
“modal” f representing the process being measured. Such a model will of course
depend on the messurement variable ¢, but also on a discrete set of K model
parameters ag; the modeling task consists in choosing values for these modeling
parameters so as to minimize the difference between the model’s predictions and
the actual data:

minimize w.r.t. (81,02, ..,0%) : fitiae) —Ff, §=1,2,...J (5.6)

A commeon strategy consists in minimizing the x? merit function,

7 s 2

2 _ Fltiiax) — F;

Xlaw) =3 (—H, : (5.7)
j=1 y

with respect to the ag's. Provided that errors are normally distributed and in-
dependent of one another, this effectively corresponds to A maximum likelihood

42

[T T T | T T T | T T T | T T T | T T <:::‘I]
o I %
» o o]
IEG I h —]
- % o o %9
100 [@ &:j © ii ° 9
B o o W o]
i ok QC% T ’*Gg i
B o o j}}{}o %00 0{} _
E 80 [o ??3 @3)0 % %ﬂéﬁ o "
oy | o) .
sl 3% Cw ¢ -
| . o _
- @ & &}% ° .
40 [o oo o % = i}]
B & i % i
& o =

[o ’
= &]
2015 .
A]
of . . oy T

Cl' 20 40 an BO 1040

t

Figure 5.4: Synthetic dataset generated using eq. (5.11) below. This dataset
includes normally distributed noise {(zero mean) with & = 5, corresponding to the
error bar plotted in the upper left corner of the Figure. A linear trend is clearly
apparent, but is that really all there is to it 7

criterion, in the sense that it selects the set of model parameters that maximizes
the probability of the given dataset being realized, given those model parameters
as true. Figure 5.4 shows a synthetic dataset comprising J = 200 measurements.
How this dataset was generated is presently unimportant, other than knowing that
with each point is associated the same measurement error ¢ = 45, as indicated
by the error bar plotted in the upper left corner of the Figure. Few data modelers
conld resists the temaptation to begin by ftting a straight line through these data;
the model under consideration would then take the simple form

f{t; a,bh) =at + b, {(5.8)

with the modeling task reducing to find the walues {a,) that minimize the RHS
of eg. (5.7). Because the model depends linearly on its parameters, this is a
linear least sguaeres fitting problem (the dependency on the dependent wariable &
is actually irrelevant).

Consider now solving this fitting problem with PIKATA. We have two ad-
justable parameters, i.e., n=2. Lot us then associate a with x{1) and b with x{2).

43

Unlike the model problem of the preceding section, it is now up to modeler to
select appropriate bounds for the model parameters. A cursory glance at Fig, 5.4
wolld suggest that

0<a<1], 0<h< 100

are probably safe choices. These ranges may appear rather generous, but to overly
constrain the range of model parameters is in general a dangercus policy, even
though it may greatly improve efficiency. (Once the dust settles an expensive but
correct solution remains Infinitely better than a cheap one that Is plain wrong.

The next step is to choose a measure of fitness. Many options are again
available, while keeping in mind that PIKAIA is set up to mezimize the user-
supplied fitness function. In the present case perhaps the most straipghtforward
approach is to make direct use of the x2, by assuming something like

1
Recall that PIKATA requires the fitness to be a positive definite quantity, so that
writing fitness= —x? is definitely not a valid option. Because PIKATA makes use
of ranking to assign relative fitnesses in the roulette wheel algorithm, adopting
instead 1/{x?)? or 1/1/x? or any other rank-preserving transformation would end
up being nearly exactly equivalent to eq. {5.9) above (the “nearly”™ has to do with
the Implementation of variable mutation, and is discussed in its proper context
further below). Computing the fitness associated with an individual {a,#) then

Imvolves

{1) appropriately rescaling a and b,

2} computing the corresponding y? against the data, and
{ ting ag
{3) making use of eq. (5.9) to produce a fitness.

The usersupplied fitness function could then lock as follows:

function fitla{n,x)

Fitnesa function for linear leasat aguarea problem
{Bect. £.2)

non on on

implicit nmone

common/data/ £{200),t{200) ,aigma,ndata

integer n,i,ndata

real x{n),fitla,f,t,sigma,a,b,sum
g========== 1. regacale input variablea:

a=x{1)+10.
b=={2)+100.
ge========= 2., compute chi#s2
gum="0.
do 1 i=1,ndata
sun=aumt { {a*t{i)+b-£{i))/aigma)#+2
1 continue

g========== 3, define fitneaa
fitla=1./aum
return
end

Note the presence of the common hlodk /data/, which passes tothe fitness funetion
the ndata data points £{1:ndata) and t{l:ndata), as well as the error aigma
{assumed identical for all data points, and thus a scalar quantity here). The code
listed here presupposes that in the program calling PIKATA, the user has first called
an initialization subroutine that read in these data and stored them appropriately
in the common blodk. Note also that the fitness calculation does not require
the computation of any derivatives of the y? function with respect to modeling
parameters. An important caveat is in order here. Performing the rescaling in the
following manner:

{1)==x{1)+10.
z{2y=x{23+100.

besides being of dubicus programming style, would have disastrons conseqiences;
examination of PIKATA's listing will reveal that internally, the calls to fitl will
often take a form equivalent to

fitna{ip)=fiti{n,oldph{l,ip))

at various places in the code. Because of the implicit association between oldph
and x implied by the arpument lists of the function, modifying x within fit1 would
consequently alter the content of the population matrix oldph within PTIKATA. Try
it and see what happens!

Figure §.b shows the best fit found by PIKAIA after 100 generations, using
defanlt settings for other Input quantities. Figure 5.6 details the evelution of some
quantities of interest during the evelutionary run. The evolution of this specific
golution {cf Fig. 5.6{A)) is characterized by a gradial increase of the slope a, with
concomitant decrease of the intercept b but other sclutions (1.e., starting from dif-
ferent initial random pomilation, by using other ased valies to initialize PIKATAs

45

140

120

100

20

£t)

80

40

=20

¥'=1347.9
o N T B

{ 20 40 a0 Bl 1440
t

Figure 5.5: A penetic linear least squares fit to the dataset of Figure 5.4, obtained
by running PIKATA over 100 generations using default settings for the other input
parameters. The final solution has (a, b) = (0.99980, 19.218).

random number generator) sometimes show strongly non-monotonic evolution of
the sclution parameters, in particular at early evolutionary epochs.

It is instructive to examine the variations of the nmitation rate in the course
of the evolutionary run. COne may note on Fig. 5.6(B) that during the first ten
generations, the population rapidly converges, as evidenced by the ¥ eurves for
the best and median individuals becoming nearly identical by the tenth generation.
Ome may recall from §3.7.2 that this is the trigger for the onset of nmitation rate
increase, and this is clearly happening here as seen on Fig. 5.6{C). Note how,
as the population starts to diverge again {generations 15—25) the mutation rate
stabilizes, but starts increasing again once the population has again reconverged
{generation 30). From that point on the populaticn never really converges again,
and the mutation rate stabilizes at a level close but inferior to the madmum
allowed mutation rate pmmtme.

The initial drop in mutation rate in the first five peneration would also sugpest
that for this particular application, the lower bound rdifhi in subroutine ad jmut
shonld be adjusted upwards. This is the single internal component of PIKATA that

T

pmut

10 -
o E 3
) B]
s 1 L 1 1 1 1 1 |(A}. E
0 20 40 S0 80 100
10000FE 7 7 7 ; ' ' v]
1000 & =
L — Hest]
b Median B .
100 . . L . (B)
0 =20 40 an 80 100
1.0000 - - - - e
- pmutmsz cesenemennanes 3
0.1000 E
0.0100 =
proat (k=0) 3
0.0010 -
= pmutmn oo =
C () 3
0.0001 S P S S SR
¥ 20 40 a0 80 1040

Generation

Figure 5.8: Evclution of the sclution parameters throughout the evelutionary
run {part [A]). Part {B) shows the evolition of the x? for the best and median
individuals in the population, and part {C) the evolution of the mmitation rate
{remember that PIKATA operates under variable mutation rate by default). Note
how the initial increase in mutation rate (part [C]) cceurs in conjunction with
convergence in the population, as evidenced by the y? of the best and median
becoming comparable between the fifth and tenth generations {part [B]).

47

is directly influenced by the specific muimerical choice made for defining fitness, as
in eq. (5.9) above (a way to bypass this problem is discussed in §6.3.1 below).

5.3 A non-linear least squares Lt

At this point the overenthusiastic modeler may rush out of his/her office, call a
press conference, and say something deeply profound (sic) about the age of the
umverse, or the mass of the glion, or maybe even both. The cautious modeler,
on the other hand, may notice that the ¥ of the best fit is actually not all that
good; for a model attempting to fit J measurements with a model depending on
A parameters, a good fit should produce

x2S J—K, {5.10)

which is not the case here, with J — K = 198 and y? ~ 1350. The quantity
J — K corresponds to the number of deprees of freedom awailable to the fit, and
embodies commeon sense notions such as the fact that a linear fit through two data
points better return a y? equal to zero. In fact, equation (5.10) is really only
a zeroth-order estimate of goodness of fit, but it amply suffices for the present
discussion. The excessive y? value of the best fit may be due to a number of
causes. Perhaps the error bars on the data have heen underestimated by the
experimenter 7 Perhaps the errors are not normally distributed, and/or exhibit
systematic trends and correlations ¥ Then again, perhaps the model used to fit
the data is simply inadequate ¥ The first thing to do is to perform a few additional
evolutionary runs, to ascertain the rochustness of the best fit parameters. In the
present case one systematically obtains y? > 10%, while the best fit parameters
{a ~ 1, b ~ 20) remain identical to 4 digits in most cases. This strongly suggests
that the culprit is not the stochastic component of the genetic alporithm sclution
procedure, but perhaps instead an inadequate model.

Returning to Figure 5.4, it does not take mmich imagination to detect hints
of periodic behavior in the data. This suspicion is spectacularly confirmed by
sibtracting from the data the best fit of the preceding section, and examining
the power spectrum of the data residuals. So, Instead of the simple linear model
described by eq. (5.8), let us consider instead a more complicated model of the
form

A
Flio, b AP, ®)=al+ b+ ZAmsin [2w(§+@m)], {5.11)

m=1 m

describing a mltiperiodic signal superimposed on a linear trend. The model now
depends on the a and # of the linear component, plus M amplitude/period /phase

48

triplets [Am, Bn, ®m), for a grand total of 3A + 2 parameters. Adopting again
the x? merit finction as a measure of goodness of fit, equations (5.7) and {5.11)
now define a rnon-lineer least sguares fitting problem, since the model now depends
nonlinearly on the B 's3.

The solition procedure using PIKAIA parallels to a remarkable degree the
corresponding procedure for the nominally imich easier linear least squares problem
of the preceding section. For a given cholce of M, the problem involves n= 3M + 2
parameters. The first step is to choose the parameter ordering for the enceding
process. Although there can be subtleties involved here (some to be discussed
further below), for now let s simply adopt the following convention:

X = '[ﬂ':b: Jq-1:-'!:"1: lz"1:J4-2:-'F'2: l@Z: "':AM:PM: @M} (512}

The second step is to establish adequate sealings. The parameters a and b can be
scaled as before. The remaining parameters can be scaled as

0<An <100, (AD<Pn<B50, 0<On<l, m=L12..,M

Note that the lower bound on the Pn's stems from the fact that a set of equally
spaced measurements, as on Figure 5.4, does not contain any useful information
at frequencies above the so-called Nyquist frequency faw = 1/{2At), where Ad is
the sampling interval in {.

The third step is to construct a ftness function. It is at this point that
PIKAIA's wersatility becomes most apparent. While each individual is now “de-
fined™ by 3M + 2 parameters, all the fitness function needs to do is compute the
y? associated with the set of model parameters, which, conceptually, is no less
straightforward for a nonlinear model such as eq. {5.11) than it was for the linear
mode] defined by eq. (5.8). The fitness function for the nonlinear least squares
problem could lock as follow:

function fitib{n,x)

Fitneaa function for non-linear leasat aguarea problem
{8ect. £.3)

nononon

implicit none

% The apparently nonlinear dependence on the r's can be reduced to a linear
dependence by expressing each mode on the RHS of eq. {5.11) as a sum of sine
and cosine.

44

common/data/ £{200),t{200) ,aigma,ndata,m

integer n,m,mmax,ndata,i, j

real x{n) ,fitlb,f,t,sigma,amp,per,a,b,
+ aum,sum2,nyp,pi

parameter {mmax=10,pi=3.1516926536)
dimenaion amp {mmax) , per {mmax)
g========== 1, reacale input wariablea:

a=x{1)+10.

b=x{2)+100.

nyp=2.*{t (2} -t (1))

do 10 j=1,m

amp{ j)=x{3+j)+100.

per{j)=x{3+j+1)*{50.-nyp)+nyp
10 continus
g========== 2, compute chis+2
aum=0.
do 1 i=1,ndata
aum?=[}.
do 2 j=1,m
sumZ=sum2+amp{ jI*ain{2. +pi* (L (i) /per{j)+x{(3+j+2)))
2 conkinue
sum=aumt+ { {a*t{i)+braum3-f{i))/aigma)*+2
1 continus
gem=mmmm=== 3. define fitneas
fitlb=1./aum
return
end

Since the argument list of £it2 must comply to what PIKAILA is expecting, the
number (m) of Fourier modes used for the fit is actually passed through the commeon
blodk /data/. It also turns out to be convenient to define two local arrays to
perform the scaling of the amplitudes and perieds, which in turn requires their
maximum size {mmax) of these arrays to be hardwired in a parameter statement.
These mild complications notwithstanding, compare this to the fitness function
listed in the preceding section; the modifications are quite trivial. And once again
derivatives of the merit function with respect to model parameters are simply not
required.

Figures b.7 and 5.8 show results of three schitions obtained using PIKATA's full
default settings. The first solution attempts to fit a single Fourier mode (M =1
in eq. {5.11)), the second solution makes use of three Fourier modes (A4 = J) and

a{)

the third of five (M = 5). At least in terms of the x?, the M = 1 solution is
already a definite improvement over the linear fit of Fig. 5.5, although one still
has x2 > J— K. The M = 3 and M = § solutions, on the other hand, yield y?
that excoods J — K by less than a factor of two for A = 3, and by ~ 10% for
M =h. There is a trend here, yet the temptation to further increase M should
be resisted. For one thing, letting M increase indefinitely for the sake of a lower
and lower y? could rapidly start to resemble the usually absurd notion of trying
to fit J data points with a polynomial of order J — 1. It would also be premature
to conclude, on the basis of the final x¥? of the three solutions shown on Figs. 5.7
and 5.8, that there exists at least five Fourier components in the dataset. In this
simple sequence of three solutions a clear pattern emerges in the Fourier modes
solected by the algorithm, as shown in the following Table III:

Table ITT
Non-linear least squares solutions: parameters for hest individuals

Af a b m An P, D X
1 (.9888 19.21 1 10.40 9.044 0.8446 9235
3 0.9961 19.30 1 9.948 20.04 (.h124 2BH.B
2 7.348 8.927 0.7008
3 6.770 7.373 0.7011
3] 0.9888 19.37 1 9.997 20.01 0.4599 2071
2 9.828 9.020 0.8115
3 G.945H 7.472 0.8001
4 20.01 44.60 {.6462
] 18.76 4h.10 0.1644
original signal:
3 1.000 20.00 1 12.00 20.00 0.5000 2004
2 10.00 9.000 0.8000
3 8.000 7.500 0.8000

The mode identified in the A = 1 solution is also present in both A = 3 and
Af = b solutions, which is certainly encouraging. Likewise, the two additional
modes found In the M = J solution alsc show up In the M = b solution. Great.
Examination of the two remaining modes {m = 4,) of the M = § solution should
sound a warning bell: nearly equal amplitudes and periods, ®4 — @5 ~ (.5, corre-
sponding to a phase difference of almost exactly « rad {cf. eq. (5.11)). The fourth

nl

and fifth Fourier component cancel one another out, and do not contribute signif-
icantly to the net sipnal. This depeneracy is a strong hint that using M = § Is
overkill. Related behaviors are (1) modes for which A, — 0, and {2) modes that
become fragmented, i.e., identical periods and phases so that the two amplitudes
simply add up arithmetically to form what is effectively a single Fourier compo-
nent. The fact remains that the A = b solution has produced a better final fit
than M = J; this can be traced to the added fexdbility provided by the availability
of extra Fourier modes, which can be of great help in moving away from secondary
extrema; as a rule of thumb here, iIf one is specifically locking for M modes (say),
it would be a good idea to try to have PIKATA search for ~ JA/2.

Figure 5.8 also illustrates an important, general feature of GA-based optimiz-
ars: notice how, in the first 100 generations, the convergence rate of the sclhitions
deteriorates with increasing M (and thus n), even though the final accuracy in
this case increases with increasing A, This of course reflects the fact that the size
of the parameter space to be explored increases peometrically with n while the
population size is held fixed, but it remains true in general that the performance
of GA-based optimizers can sometimes deteriorate dramatically as the number of
adjustable parameters becomes large, although the mapnitude of this deterioration
tends to be very problem-specific. A final comment related to Figure 5.8; while
the y? of the M = 1 and M = § sclutions do not decrease much in the second
half of the evohitionary run, the y? of the M = 3 sclution shows a significant
drop around generation 48(). This is due to the appearance and subsequent spread
of a favorable mutation in the population. Such an event opens up new roads in
parameter space, the full exploration of which being likely to require some tens
of penerations. Faced with a convergence curve locking like the dotted line on
Fig. 5.8, a careful genetic modeler would be well advised to extend the run by a
hundred more generations.

It is now time to confess that the synthetic dataset of Fig. .4 was produced
using eq. {(5.11), with M = 3 and using the parameter values listed at the bottom
of Table III. It is encouraging to note that the A = b schition actually returns
a y? alightly inferior to that produced by the original signal. This may appear
odd, but is simply related to the specific neise realization used in preducing the
synthetic dataset?. Examination of Table I also shows that all non-degenerate
and/or non-canceling Fourier modes identified by PIKATA map rather closely onto
modes existing in the original signal. An interesting exception is the amplitude

1 Actually, if a M > 3 solution were to consistently yield a x? significantly
inferior to that associated with the original sipnal, one would have to sericusly
wonder about the quality of the random number generator used to produced the
synthetic dataset.

n2

150

1040

£(t)

50

150

1340

f(t)

50

150

T
N
[
—]
T
o
I
[l
[min
~
A

100

f(t)

50

Figure 5.¥: Non-linear least squares solutions obtained with PIKAIA using an
increasing number { M) of Fourier modes {cf eq. (5.11)) to fit the dataset of Figure
5.4, All sohitions were computed using PIKATA's default settings, and so evolved
over 500 penerations.

04

10000 [T T I A IR]
| M=1 i
_I -
R — M=4 1
'EI‘ -------- M=5 T
Ty
&
a, 1000 -
T]
I T]
'|I-H __
10000 Lev vy o0 Lo vy o Lo e o IR
O 100 200 F0) 400 S00

Generation

Figure 5.8: Evolution of the x? associated with the best individual of a given
generation, for the three genetic solutions depicted on Fig. 5.¥. Note how, in the
early stages of the evolution, the convergence is fastest for the solutions invelving
the least mimber of parameters.

of the P; = 20 mode; the original amplitude is A7 = 12 (superscripts “&” are
hereafter used to denote parameter wvalues of the original signal), yet both the
A =3 and M =) sclutions ended up with A; = 8.99....

We are encountering here a problem related to the rather subtle interplay
that exists between the encoding protocol (§3.5) and the action of the simple one-
point mutation operator (§3.7) incorporated in PIKATA. Detailed examination of
gither the M = J or M = 5 solution reveals that early in the evclutionary run, a
Fourier mode with Py ~ P} and &1 ~ ®7 but Ay « 10 shows up. Any individual
encoding these three parameters early in the run ends up significantly fitter than its
competitors, with the consequence that most individuals of subsequent generations
incorporate those parameter valies in their genotypes. As evolution proceeds and
other Fourler modes become fixed in the population, natural selection fivors an
increase towards 41 — A} = 12. Such incremental increases occur primarily (if
not exclusively, in later ewolutionary phases) through the action of the mutation
operator. Consider the fllowing portion of an individual's chromosome (with

nd
nd=5):

S ¢+ 1+ 1 1+ T {5.13a)

corresponding to the chromosome segment where the amplitude 4; = §.999 is
encoded. The “target” chromosome segment for A7 would lock like

e 12000, {(5.13%)

for 4; = 12.000. Clearly, transforming the first chromosome segment into the
second requires a very coordinated piece of work on the part of the mutation
operator. In this case only the first two penes are really important; the first
gene nnust mutate from 0 to 1 end the second from 9 to 0 or 1. Any of these
nritations cccurring in isolation, or mutating to other digits, will produce an
nferior individual. Omne may easily verify that the probability of the required
nritations simultanecusly occurring in the same individual is

_ pmt pmut

10 B’

evenn with pmut Hoored at pmutmz={().25, this remains a very small number, ie.,
p r~ 1073, Furthermore, this event must not be accompanied by any mutation at
genes mapping onto the first few sipnificant digits of the other parameters. The
probahility of this et cccurring would be of order {1 — pmut)™~ if we consider
only the first significant digit of each parameters, so that the net probability of
going from (5.13a) to (5.13b) is

2
PO e (1 — pmut)™Y, (5.14)
a0
with pmtmz=0(.25 and n = 11 {for M = 3), this new net probability drops to
p~7x 1078 down to 4 x 10 if two significant digits are considered essential.
Notice that increasing the mutation rate does not help! The above probahility van-
ishes In both limits pmut— { and pmut— 1. The bottom line is that going from
{b.13a) to (5.13b) above is very unlikely indeed. The encoding scheme produces
a “wall” {often referred to in the GA literature as a “Hamming wall”) that the
standard cne-point mmtation operator is highly unlikely to cross. This could be
nterpreted as a rather severe limitation of the decimal encoding scheme adopted
herein. Indeed, the use of a binary scheme based on the socalled Gray coding
{e.g. Press et el. 1962, §20.2) does not suffer from this shortcoming. Should we
then abandon decimal encoding altogether? Not necessarily; ancther possibility
is to specifically modify the standard one-point mutation operator so that it can

P~

b

cross Hamming Walls. This may involve (for example) incrementing by +1 the
gene located left of another pene mtating from a9 to a 0, or from a 0 to a 8.
This “carry-over-the-one” should bring back nostalgic memories of grade school
days... and is left as an exercise! It does invelve additional operations and tests
within the mutation operator, but experience shows that in real-life applicaticns
the amount of CPU time spent running the mutation operator is utterly insignif-
icant as compared to fitness evaluation, the latter being typically where most of
the CP1J time ends up being spent.

A final comment concerns the convention adopted above to order the sclution
parameters prior to enceding. We adopted above the ordering

x = {a, b, A1, P, ©1, A, Py, ©a, ..., Aar, Par, Dar}, {5.15a)
but cne may think that the following wold have presumably worked just as well:
x = {a, b A1, Az, ..., Aar, P1, P, ..., Par, B4, By, ..., Par}. {0.15%)

It turns out that the econventicn {5.15b) yields markedly slower convergence that
{b.15a). This time we are dealing with a {crucial) subtlety associated with the
operation of the crossover operator {see §3.6). Consider again the appearance, in
early evolutionary phase of an individual having lodked onto the P = 20 Fourier
mode with reasonable accuracy, e.g.,

(A, P, ®) = (9.987, 20.666, 0.48888);

ignoring parameter rescaling for the sake of simplicity, under the convention (5.15a)
the corresponding amplitude/period /phase triplet would end up encoded on the
chromosome as

ceeeeee - DOOST2066648888. ... {5.16a)
say, while under the convention (5.15h) the chromosome would lock something like
cereeenn . DODET. 20666......... £8888........... (5.16h)

Now, admittedly an individual incorporating those parameters In its genotype will
end up fitter than averapge, independently of the parameter ordering. However,
upon breeding, an individual encoding the parameters according to convention
{.19a) is far more likely to pass on the corresponding amplitude/period/phase
triplet #niect to one of its offspring. This Is of course directly related to the cut-
swap-splice mode of operation of the crossover operator. For M = 5 and nd= 5

4

one may verify that the corresponding probabilities for the crossover operator
fiot to disturb the above sets of adwantagecus penes are p = (.E2 for convention
{h.15a), but only p = (.35 under convention (5.15b). This possibility of passing on
and combining through siuccessive penerations discrete chunk of “advantapgecns”
chromosomal segments, with the paralle] elimination of “detrimental” segments, is
largely what confers to genetic algorithms their power for efficient exploration of
parameter space. This behavior is embodied in the scheme thesrem (see e.g. Hol-
land 1975, 1992; Goldberg 198G, chap. 2, and references therein), which forms the
basis of most theoretical analysis of genetic algorithm behavior and performance.
Such considerations have no counterpart in most conventional optimization meth-
ods. To dwell further into these matters would take us to far cutside the purview
of a user's puide, but the reading list provided In §6.4 showld be consulted for direc-
tions to comprehensive discussions of the crucial concept of schemata processing

by penetic algorithms.
5.4 Generalized least squares fitting by distance regression

(onsider the dataset shown in Fig. .4, and the associated modeling task of finding
the ellipse that ylelds the “best™ representation of these data. There are five fitting
parameters Involved: the geometric center {wg, o) of the ellipse, its semi-major
and -minor axes a and b, and the inclination &n of the major axis with respect to
the z-axis {say). The sought after ellipse is described in polar coordinates by the
clurve

5 g alhe 1
") = et 8 = 8) + FEem(E — 6y) (5.17)
The J data peints {z;, ;) are then compared to
X; =m0 + () cos(8), (5.18a)
Y; = yo + r(8;) sin{f;), (5.180)

where 8; = atan{y;/z;) € [0, 2x] is the angle subtented by the segment joining
(w0, 1) to {x;,;). The procedure known as distence regression (hereafter DR)
finctions as follow: given the ellipse center (w0, 30), compute the distance d;
between that center and the 7 data point; compute then the predicted radius
r(8;) associated with the ellipse having parameters {za, %o, 8, b, fa). The DR, merit
funetion can then be defined as

5

F(zo, 50,3, b, 60) = »_(r{6;) = d;)° (5.19)
i=1

a7

O[T T T T T T T
15[?9 & o :
o SO
0 O _
~1of Yy <]
< O ®
O &
05F ¢ & .
< <
&G
'D,'D- N B R B
0.0 0.5 1.0 1.5 2.0
x

Figure 5.9: Synthetic data for the peneralized nonlinear least squares example
of §5.4. Measurement errors of relatively large amplitude exist for both x and ¥
coordinates, as indicated by the error cross In the upper left. Fitting an ellipse to
these data is a rather difficult and invelved modeling preblem by any standard.

{The above expression explicitly assumes that the measurements errors on # and
 are identical for all measurements; otherwise appropriate weights mmist be intro-
duced in eq. {5.19); see, e.g., Boggs et al. 1987)°. The optimization task is then

5 The related, more general procedure known as orihogonal disience regression
{ODR.) described in Boggs et of. (1987) minimizes the sum of the distances hetween
data and parametric curve; however the distance s computed not in relation to a
commeon “center of pravity”, but along a line segment perpendicular to the para-
metric curve being used to model the data. The GDR procedure then minimizes
the sum of “nearest approach” distances between the data and the parametric
curve. This is of course identical to the scheme described here In the case of cir-
cle fitting, and effectively equivalent for fitting ellipses of low eccentricities. The
software package ODRPACK (Boggs et el. 1989) is a good example of the current
state of the art for ODR. An alternate solution procedure can be also devised
based on Singular Value Decompaosition; see Golub & Van Loan 198G, §12.3.

D8
to find the parameter set
x* = '[-'T—'Esﬂﬁsﬂ*sb*sﬂﬁ:'

that minimizes eq. {5.19). Clearly, the relationship between the merit function
and the model parameters is widkedly non-linear. The mathematics involved in
applying conventional techniques to this problem are rather griesome (try to work
out the partial derivatives 9F/da for yourself and see how you like it), and the
resilting software packages are of substantial size and complexity. This problem
& far from trivial

Consider now a solution computed using PIKATA. The procedure is basically
as straightforward as for the much simpler least squares problems of §§5.2 and 5.3.
We are dealing with a b-parameter search space, so n=5. From Fig. 5.8 one may
adopt the scalings:

0 < To,%0,8,0 < 2, <8<

Using the DR merit function {eq. (5.19)) as a measure of fitness, the required
fitness function could lock something like this:

function fit3{m,x)

Fitnesa function for circle fitting problem uaing
a robuat estimator bamed om the Hough transform
{3=ct. §.5)

L TN IO & TR I

implicit mone
common/data/ xdat{200),ydat{200) ,sigma,ndata
integer n,ndata,i
real x{n),fit3,xdat,ydat ,sigma,x0,y0,diatdat,
+ rl,r2,sum
g========== 1, reacale input wariablea:
€ 0 < x{1,2) <= 3
x0 = x{1)*3,
yo = x{2)+3.
g========== 32, compute merit functiomn
rl=1.-aigma/2.
r2=1.+aigma/2.
sum=0.
do 1 i=1,ndata

oYy

c {a) compute diatance d_j from center to data point
distdat=saqrt { {(x0-xdat (i) J)**2+{yO-ydat (i))++2)
c {b) increment Hough merit function

if{diatdat.ge.rl.and.distdat.le.r2) sum=sumt+l.
1 continue
g========== 3. egquate fitneaa to Hough merit function
fitd=aum
return
end

The code is direct transliteration of the DR, procedure outlined abowve. The user-
supplied function fatan must return the arctangent € [0, 2x]. The inverse of the
DR merit function is used as a measure of fitness, because PIKAIA is set up to
mazimize the usersupplied fitness function.

The solid line in Figure §.10 shows a solution obtained by letting a popula-
tion of B0 individuals evolve over 200 penerations, with PIKAIA operating under
the Select-random-delete-worst variation of the Steady-state-delete-worst repro-
duction plan (by setting fdif=0.0 and irep=3J). Defaults settings are used for all
other parameters. The dotted is the ellipse from which the synthetic dataset of
Fig. 5.9 was actually penerated; this original ellipse had

(o, 50,2, b, 80) = (1.0, 1.0,0.75,0.50, x/3),
while the penetic solution returns:
{w0, 50,8, b, 80) = (0.97076, 0.870996, 0.77182, 0.50538, 0.32115x).

Of course different noise realizations would lead to different “best fit” ellipses,
and there s no reason to expect that in the presence of noise, the best fit should
coincide exactly with the original ellipse. The point here is that despite the rather
noisy data, which translates in a very multimodal merit function hypersurface
In parameter space, PIKATA has no difficulty recovering the original ellipse to
Impressive acclracy.

5.5 Data modeling vsing robust estimators

The distance regression procedure used to solve the ellipse fitting problem of the
preceding section remains a form of generalized least squares minimization. Such
statistical estimators perform well if errors are normally {or at least compactly and
symmetrically) distributed about the “true™ wvalies, but can give spurious resilts

G0

2O T T T T T T T T T T
1.5F

= 1.0

D,D-----I----I....I....
0.0 0.5 1.0 1.5 2.0

Figure 5.10: A 200-generation genetic solution to the distance regression problem
defined by the dataset of Fig. 5.9, using PIKATA's default setting. Both the best
allipse and the corresponding major axis are indicated (solid lines). The dotted
lines are the original ellipse (and corresponding semi-major axis) from which the
synthetic dataset was penerated. Note that for this noise realization, the penetic
solution yields a smaller vahie of the DR merit function than the original ellipse.

if errors exhibit strong asymmetric trends and for are polluted by outliers. Using
a x? {or other related least squares estimators, such as in §5.4) will give great
weight, in computing the merit function, to data points that are wey off in outer
space. This is perhaps most easily seen by computing a linear least squares fit
for 10 data point lying ezecily on a straight line, but where ocne endpeint datum
s artificially displaced by a large factor above above the original ¥y = mao + b
relationship; the best fit will in general be a poor fit {(see the discussion in Press
et al. 1992, §15.7). This characteristic of least squares estimators has given rise
to the all too common practice of deleting data points that are “chvicusly”™ way
off, which is even more cbjectionable than “chi-by-eye”. Clearly a more robust
statistical estimator s required in such cases,

Consider a simplified version of the problem treated in the preceding section,
namely fitting a circle of known radius to a dataset with errors in both coordi-

a1

nates. While presumably simpler than the ellipse fitting problem of the preceding
soction, this is stéfl a hard problem (see, e.g., Cox & Jones 1980; Moura & Kitney
1641). Introduce now the following complication {see Figure 5.11): unlike the data
of Fig. 5.9, there are now two components to the “error”; a low amplitude sym-
metrically distributed component, as well as a high amplitude, highly asymmetric
component: someone took a bite out of the circle... Consider now the task of
locating the true center of a “damaged” circle such as this, given the a priori in-
formation that the sought after circle has unit radius, and that we mey be dealing
with an incomplete circle (this apparently odd kind of task is actually commonly
encountered in the field of computer vision and automated pattern recognition).
The DR, estimator of the preceding section can certainly be used. The preblem
reduces to two parameters, namely the {74, 7o) coordinate of the circle center. The
dashed line on Figure b.11 is the resulting best fit. That circle is displaced to the
right with respect to the original circle, in view of the strong “pull” exerted by the
deviant data points of the bite mark; these deviant points are outliers, and they
receive overly large weights from DR, {or ODR) estimators, exemplifying the need
for a more robust estimator.

Consider the following, alternate procedure. With the target circle known to
have a radius R = 1 and knowing the error estimate &, one constriucts an anmuhis
of inner radius K — & and outer radius K + & centered on a trial center (x, ¥a),
counts the number n of data points lying within the annulus, and assigns that
value to the estimator:

g

: 0, otherwise
i=1

where, as before, d; = /(7; — 5)2 + (3; — %o)? is the distance between the j*&
data point and the trial center (%,%). The function H{%s, %) is known as a
Hough tronsform of the data, and is used extensively for pattern recognition in
computer vision {see, e.g., Ballard & Brown 1982). It should be emphasized that
the estimator based on the Hough transform differs In a crucial way from the QDR,
estimator: once a data point s out of the annulus, it simply does not matter how
far out is stands; the merit function Is simply not incremented. Contrast this to
the ODER-type estimators, where extreme cutliers can introduce strong biases, the
more so the hirther away they lie.

This impeortant difference notwithstanding, are we not simply back again to
the problem of 5.1, namely maximizing a function of two wariables 7 Depending
on the technique used to solve the problem, the answer may well be no; the
Hough transform assumes only integer values € [{, J], so that all local derivatives
formally wanish throughout the domain. Furthermore the transform most often

G2

3.{] [rTrTT T T ! T T T T i
I Original circle]

- — — QDR best fit -~ | .
251 RO REA]
- N e ;
S
T B e G L i
i Wy {;3 Gf]

i b i <]
W e
[R P]
0.5 S .
- F]
0.0 [TN TN N T TN T T A N I N | i [N T N T N N T T N N I N]

0.0 0.5 10 15 2.0 2.0 3.0
X

Figure 5.11: Synthetic dataset for a “damapged” circle. A substantial “bite™ was
first taken out of the left side of the original circle {dotted line). The data points
were then pemerated by sampling the resulting pecmetric fipure at constant angilar
increment, and adding a random error of relatively low amplitude {see error cross
on lower left) to the & and y coordinates of the point. While this latter error
component is symmetrically distributed, the original bite corresponds to errors
with a strong systematic trend that in now way resembles a normal distribution.
The dashed circle is a fit to these data with a circle of unit radius using the DR,
sstimator of the preceding section, exactly equivalent to an QDR estimator in the
case of circle fitting,.

ends 1p being mmiltimadal on a variety of spatial scales. This is certainly the case
for the Hough transform for the dataset of Fig. 5.11, as shown on Figure 5.12.
Cptimization schemes relying on derivative information, or even local nearest-
neighbour sampling, are clearly useless on this problem!

Omee again using PIKATA in conjunction with the Hough estimator (as opposed
to a least squares-type estimator) s abschitely strajghtforward. Omne can directly
adopt eq. (5.20) as a measure of fitness—and that is all there is to it. We are
indeed back to the maximizing problem of §h.1. So let's hit it as before, n=2 and
PIKAIA's default settings. Figure 5.13 shows the resulting best fit produced by

G4

20

Hough fransiorm
I o

o

Figure 5.12: Hough transform for the dataset of Fig. 5.11. The Hough transform
assumes integer walues, here in the range [0, 30].

PIKAIA. The original circle is recovered with mmich better accuracy, with the best

fit yielding
(=3, m5) = (1.5068,1.4453).

The point here is not so much that incorporating robust estimators in a genetic
code produces an inherently better algorithm, in the sense of accuracy and/or ef-
ficiency; what s noteworthy here is the eszse with which robust estimators can be
incorporated in a suitably designed gemeral purpose (GA-based optimizer. In gen-
eral, this is definitely not the case when robust estimators are used in conjunction
with more conventional optimization methods relying on derivative information,
ever. when such derivatives can be computed. We refer the interested reader to
§15.7 of Press et el. (1992) for a brief but accessible introduction to these issues.
Consider in contrast how robust estimators are accommodated within PIKATA; the
fitness function used to compute the solution shown on Fig. 5.13 looks like:

function fitZ{n,x)

£ Fitneasa function for ellipae fitting problem {Sect. 5.4)

G4

alﬂ [T T T T I T T T T I T T T T ! T T T T I T T T T I T T T T
[Fommmene Original circle — Robust fit

o 5 :_— — ODR besat Ii

2.0

T

1.0f

0o
+

0.0 [ARENEN AR AT TSN A A AN N AT A ST S A AR AN A AT
0.0 0.2 1.0 1.5 2.0 2.0 3.0
X

Figure 5.13: Robust fit to the dataset of Figure §5.11 using the Hough transform
{#olid line). The original circle is recovered with much better accuracy than when
using the ODER, estimator.

Ellipae parametera are:
x{1)=x_0, x{2)=y_0, x{3)=a, z{4)=b, z{E)=theta D

L3 IO T i I |

implicit mone
common/data/ xdat{200),ydat{200) ,ndata

integer n,ndata,i
real x{n),fit2,xdat ,ydat ,fit2,fatan,x0,y0,a2,b2,
+ thetal,distdat ,angdat ,rthj, sum,pi

paramster {pi=3.1415526538)
g========== 1. regacale input variablea:

C 0 <= x{l...4) <= 2, 0 <= x{k) < pi
=D = x{1)*2,
yOo = x{2)+2,
a2 ={x{3)42 Y442

b2 ={x{4)+2 1942

Gb

thetal= x{5)*pi
g========== 2. compute merit function
aum=0.
do 1 i=1,ndata
{a) compute diatance d_j from center to data point
distdat=saqrt { {(x0-xdat (i) J)**2+{yO-ydat (i))++2)
{b) compute angle theta_j of megment center---data point
angdat=fatan {{ydat {i)-y0), {=dat{i)-=0))-x{E)+pi
{c) compute radiua r{\theta_j) of ellipae at that angle
rthj=aqrt {a2+b2/{alsain{angdat)++2+b2¢coa{angdat) ++2))
{d) increment DR merit function
sun=aumt{diatdat-rthj)++2
1 continue

n

n

n

n

g========== 3. equate fitnesa to inveraes of DR merit function
fit2=1./aum
return
end

Rescaling and circle vs ellipse lssies notwithstanding, this differs in only twso source
code lines from the source code for the DR estimator of the preceding section.
Very few methods coild be so easily modified (an important one that could is the
Simplex method, already encountered in §4.7).

5.6 A warning concerning error estimates

WARNING: [Jsers should resist the temptation to use the population distribution
In parameter space, at the end of the evolutionary run, to calculate variances, and
from those infor error bars; the final distribution of the population in parameter
space represents an ezdremely blased sample, and will be found to depend signifi-
cantly on the types of penetic operators and ecological strategies used throughout
the evolutionary process. END QF WARNING.

Broadly speaking, there are two avemes open to obtain error estimates on
the “best 6t" parameters. The first involves the hybrid approach advocated in
§4.7.1 above, in the sense of using the best genetic solition to initiate a conjugate-
gradient type method (say), and make use of the covariance machinery that often
accomparnies such routines {e.g. routine mrgmin of Press et af. 1992) to extract error
estimates. There are two potential shortcomings here; the first is that derivative
information is usually required, which, as we saw, can rapidly hecome messy for
strongly nonlinear models, The second is that the resulting error estimates are
local, in the sense that they are essentially constructed using information relating

GG

to local curvature in parameter space ahout the optimal sclution. Such estimates
usually have nothing to say about the ever lurking possibility that the “best fit” is
a local, rather than global, extrernum. This type of error is of course notoriously
difficult to pin dowrn. Yet there is a good chance that if you were using a GA-
based optimizer in the first place, it is because you are dealing with a complex,
fll-hehaved and most likely multimodal search space. Remember, no free lunch!

The second option, both safest and costliest, iInvolves Monte Carlo simulation.
In the case of the various modeling problems treated in this chapter, the mapping
of ¥2 boundaries in n-dimensional parameter space is usially the procedure used to
established ronfiderce imdls on model parameters. This is a vast topic, a detailed
discussion of which is not appropriate here. We point the interested reader to
£15.6 of Press et al. 1992, and to Bevington & Robinson (1§92, chap. 11). Let us
simply mention that the procedure invelves producing a set of perturbed scluticns
a' around the “best fit” a*

al=a*+Aa', i=12..1

and computing the yZ associated with each perturbed solution; for large encugh I,
it becomes possible to estimate the probability that the “true” sclution parameters
lie within a confidence region xz{a*] + Ay? in n-dimensional parameter space.
The point here is that If a genetic sclution has already been cohtained, then all the
machinery required to compute the required

x*a* + Aa’), i=12..1I

is already in place: it is simply the userwsupplied fitness function! While the
constriction of confidence limits may twrn out to add a significant CP1J-time re-
quirement, in terms of coding or other {real-time) work on the part of the modeler,
the associated coding overhead is mich smaller than one may originally Imagine.

5.Y Other applications

The ease with which PIKAIA moves across problem domains is due to the fact that,
findamentally, GA-based optimizers repeatedly solve the forwerd problem associ-
ated with the modeling task, as opposed to the original rverse problem posed by
the data itself. Craig & Brown (1986) give an accessible introduection to some of
the sneakiness lurking in inverse problems. The point is that forward problems
{given a and b, compute a simulated dataset y; = ar; + b and its associated x%)
tend to be much easier and better posed than the corresponding inverse proh-
lem {given data, solve directly for the walues of a and b that minimize x?). In

a7

that respect (GA-based optimizers Indeed resemble Monte Carlo methods. Not
surprisingly genetic techniques have attracted the interest of workers involved in
complex mverse modeling tasks. The power of GA-based methods has already
been amply demonstrated in the field of geoseismic acoustic inversion (see, e.g.,
Wilson & Vasudevan, 1991; Sen & Stoffa, 1992; Sambridge & Drijkoningen, 1992),
where their efficiency has been shown to exceed that of Monte Carlo methods by
orders of magnitude. Preliminary applications to helioseismic inversion {Tomczyk
et el 1995) also lock extremely promising. In particular, the ease with which
constraints such as positivity and/or monotonicity can be effectively hardwired
at the encoding level makes the usually formidable task of ronstroined énversion
easily manageable for wide classes of constraints.

G8

G4

8. WHERE TO GO FROM HERE: HACKING PIKATA

As mentioned already a few times in the preceding pages, PIKATA is primarily a
learning instrument. It has nonetheless been successfilly used, as of this writing,
to solve a number of real life problems encountered by the authors {and some
friends and colleagues) in their respective research endeavours. Especially in the
development phases, putting PIKATA to work on a real problem may in some cases
be facilitated by performing some meodifications to the code itself. The aim of
this chapter is to provide the user with some basic information that may be useful
toward that end.

8.1 Owverall coding structure and subroutine dependencies

Figure §.1 illustrates schematically the subroutine dependencies within PIKATA, as
called from a typical driver code, such as for the linear and non-linear least squares
fit problems discussed in the preceding chapter. Note that appropriate random
mumber generator and ranking subroutines are provided with PTIKATA's installation
packapge, even though they are labeled “user-supplied” on Figure §.1.

In constructing the code we have strived for masximal modularity, and but for
asingle exception have entirely avoided communication across subroutine through
COMMON blacks®. While this has produced a source code lengthier than it could
have been, the motivation for doing so is to facilitate the task facing a user wishing
to incorporate additional subroutines wethen the PIKATA subroutine itself.

8.2 Tailoring or expanding the output

PIKATA is currently set up to produce minimal cutput, but this is most likely
an area where the user may wish to tailor the code to his/her specific needs. In
addition to the atatua variable, the only output returned as arguments by PIKATA
s {1) a real array xb of length n, containing the n parameter values associated
with the best phenotype in the final population, and {2) a floating point scalar
b corresponding to the evaluation of funk for that phenotype. In many cases

8 The exception concerns the use of a single labeled COMMDN black to allow the
random number routine nrand to keep track of its ased.

70

MATN! PIEALA ENCODE
RMINIT® | |~ DECODE

FINIT!® —{ ADIMUT

— OROSS

| SEIECT _/_/_/_/_,_/_/—/-""’_' |
RAND?

— STDREP

FUNKM

— HEWFOF

RNEPCP RGSORT!

— SETCTL?

= user—aupplisd — REFORT®
optlional

produrss sutput to screan
= must be declared external in Mall

W LD T e
I

Figure 8.1: Dependency chart for PIKATA, as called from a typical driver program,
sich as those used for the example problems of §85.2 through 5.5, and listed in
the Appendix.

it ean he useful to output more Information to file, for example the best and
median phenotypes at each generation together with their associated fitness vahies
{cf. Fig. 5.8), or maybe even the complete phenotype population {cf. Fig. 5.3). An
apprepriate place to cutput such information is at the end of the main peneration
loop, as indicated in the PTKATA listing provided in the Appendix below.
Producing such additional cutput requires the user to be aware of where
and how the population is stored. Imternally, the population is stored in the
2-D array oldph {the 2-D array newph is anly used as temporary storage when
operating under full generational replacement). The ranking array ifit allows
access to the population in terms of rank; the Ottest phenotype 1s stored in
oldph{1:n,ifit{np)), the second fittest in oldph{1:n,ifit{np-1)), and sc on

71

all the way to oldph{1:n,ifit{1)) for the worst. The ordering of parameters for a
given individual {a colummn in the population matrix) is the same as that associated
with the input vector x{1:n) fed to the userwupplied fitness function. Omnce again,
never forget that the parameters stored in the population matrix are normalized
to the nterval [0.0, 1.0]. The complementary array jTit contains the actual ranks:
jEit{i) is the rank of the individual stored in oldph{1:n,i). The array fitna
containg the true fitness (i.e., Tunk evaluation) for each population member, with
again the evaluation for the fittest being stored in fitna{(ifit{np)), etc., as for
oldph. Table IV below summarizes size and type information for these Important
internal arrayes.

Table IV

Internal arrays
Array type true size active size description
oldph real {(32,128) {n,np) main population
newph real {(32,128) {n,np) new population
fitna reql {128) {np) fitness vahies
jfit integer (128) {np) fitness-bhased rank
ifit integer {128) {np) rank key index

8.3 Incorporating additional strategies and operators

The modular design of PIKAIA was adopted in part to fcilitate the incorpora-
tion of additional genetic operators and /for ecological strategies by the user. This
section merely outlines some possible modifications/additions, as an initial bit of
nspiration for users eager to experiment. In engaging in such experiments, the
user showld not be overly worried about degrading the code's performance by in-
troducing additional computations and /or tests at the genetic or ecological levels;
In most real applications, the bulk of the CPU time will be spent in the ftness
function, which is consequently where efficiency considerations are most critical.

6.3.1 Variable selection pressire

PIKAIA is set up to function with constant selection pressure, as controlled by the
fitness differential parameter £dif. It should be quite easy to let £dif (=ctrl{9))
vary in the course of the evolutionary run, for example by following the procedure
used to adjust the mutation rate pmt in subroutine ad jmot.

72

In that context, one may also recall that eq. (3.14) is not the only possible
way to monitor the degree of convergence in the population; eq. (3.14) uses the
fitness, as defined by the userwupplied fitness function, to construct a dimension-
less measure of convergence. In many applications it may be advantagecus to use
nstead the Fuclidian distance in parameter space between the fittest and median
individuals. Let zf and 7 denote the parameter sets defining the best and me-
dian individual in PIKATA's n-dimensional hounded search space. The Fuclidian
distance between best and median is simply

a 1/2
AS = (Z(m}, —3:2‘}2) (6.1)
k=1

Note that this definition of AS is completely independent of the way in which
fitness has been defined. Equation {(6.1) can be used to control either the mutation
rate or selection pressure, as the case may be. For “ftness landscapes” having
broad and flat global maxima, this distance based criterion can be expected to
yield faster convergence than the ftness-based eriterion defined n §3.7.

6.3.2 Creep rmitation

The Hamming Wall problem discussed at the end of §5.3 is a serious one, and
gfforts should be made to correct it. It should be reasonably easy to modify the
existing mutation operator (subroutine mtate) by forcing the operator to “carry
over the one”, as outlined n §5.3. Alternately, the user may wish to construct a
creep matation operator (see Davis 1991, chap. 5) designed to operate within the
decimal encoding scheme adopted herein, and call edther the creep mutation or
PIKATA's standard nmitation operator after the crossover step.

Another potentially interesting and straightforward modification consists in
letting the mnitation rate be a function of locus along the chromosome, genes map-
ping onto least signifieant digits being subjected to higher mutation rates. Such
operators will typically require the setting of some additional ajustable parameters,
slich as the mutation rate pradient along the chromosome, ete., but can speed up
convergence if high accuracy is absohitely required? {(see, e.g., Michalewicz 1984,
£6.2).

6.3.3 Floating-poinf-based genefic operators

COme may also reflect upon the fact that the encoding/decoding process used in
PIKATA (43.5) is somewhat contorted, and in some way even superfuous. The

7 although in such a situation we would tend to advocate the hybrid approach
outlined in §4.7.

7

choice of this encoding strategy was In part motivated by the (pedagogical) aim to
produce a code operationally similar to more powerful, existing (3A-based optimiz-
ers operating under binary encoding. Another motivation was to retain in PIKATA
the possibility of easy modification for handling mixed optimization preblems, i.e.,
problems where some parameters can assume continuous walues, and others dis-
crete values®. Nonetheless, it is perfectly possible to construct a genetic algorithm
that operates directly on the problem parameters as floating-point quantities. A
“foating-point chromosome™ can simply be the foating-peint array containing the
parameter values defining the corresponding phenotype. What would genetic op-
erators for floating-point chromosomes lock like? Note first that In the one-point
crossover operation (§3.6), the wlue of only one of the n floating point parameters
Ty defining the phenotype ends up being perturbed by the crossover operator,
with the others being left inrcuched or interchanged intact across chromosomes.
Starting with the two parent phenotypes

T%, T, E=1,2 .m0, (6.2)

“Hoating-point crossover” can be defined by first penerating a random integer
K € [1,n], and interchanging the elements & > K of the parent phenotypes:

i =i, k=K+1,..,n {(6.3)

and leave elements 1 through K — 1 untouched. For element K, write something
like
T} — B x 71, + {1 = R) x 7%, {6.4a)

Tk & {1 = R) x o3 + R x z%, (6.4h)

where, as before, R € [0,1] is a random number drawn from a uniform distribu-
tion. Alternately, to preserve the logarithmic distribution of phenotypic effects
characteristic of the standard one-point erossover operator of §3.6, one could write
nstead

T3 — (1 =10 x ol + 107 R x 2%, {6.5a)

e = 107F x pfe + (1 - 107%) x o%, (6.5b)

Consider for example the desipn of an optical system where certain quantities
such as focal lengths, distance between components, etc., can assume continuons
{but likely bounded) values, while refractive indices of existing optical glasses form
a Anite, discrete set. The current PIKAIA is much easier to modify to tadkle such
a problem than a purely floating-point based version.

74

where this time R € [(, nd]. Likewise, a floating-point mutation operator can be
defined by running a probability test for each parameter z, and when the test
yields true carry out the operation:

T — T £ 1078, (6.6)

where again R € [0,nd] is a random number. Note, in particular, that this ap-
proach to the mmitation operator has the important adwantage of cleanly avoiding
the problem of Hamming Walls discussed above. One must however test to ensure
that the post-mutation z still satisfies the parameter bounds.

6.3.4 Niches and rmilfimodal optimizafion

In all examples treated in the preceding chapter it was implicitly assumed that
the truly global best solution (the absolute greatest height in the multidimensional
fitness “landscape™) is the only one of interest. There are a mumber of applications
where it may also be useful to be “informed” by the algorithm of other regions in
parameter space having neerly the same fitness. A practical example encountered
in data modeling is trying to locate all regions of parameter space having a y?
below the wmlue deemed acceptable, as opposed to simply locate the absclute
mininmm in y?. Because it uses ranking and sustained selection pressure {via
the constant fitness differential parameter £dif), PIKAIA can only home in on the
absolute extreroum; if run long encugh, PIKAILA will sliveys decimate individials
living on near-extremum peaks, in faver of the extremmim peak.

This problem can be alleviated in a number of ways. By far the most powerful
is the definition of emslogical riches, so that individuals compete only with a local
subset of the population. This is a vast toplc, currently the subject of intense
research effort on the part of the GA research commumity. The basic idea and
simple implementations are discussed in Goldberg {1889, chap. §), which woild be
a good starting point. Among more recent work on the topic, the user may note
the papers by Beasley et el. (1993), Horn et al. (1994), and Cederio et gl. {1984).

8.4 Suggested further reading

The user planning to utilize PIKATA in the context of some significant plece of
research /development should seriously consider looking further into the theory
of penetic algorithms, and become acquainted with some of the strategies and
techniques not included in PIKATA. Recommended starting points are the following;:

Goldberg, D.E. 1980, Genetic Algorithms in Search, (ptimization & Madhine
Learning (Reading: Addison-Wesley),

™

Davis, L. 1491, Handbook of Genetic Algorithms (New York: Van Nostrand
Reinhold), chaps. 1 to 8.

(Goldberg's book is essentially a textbook, complete with exercises and so on,
while the first part of Davis's bock takes the form of a tutorial. Actually, the first
ancestral version of PIKATA was developped on the fly as one of us (P.C.) made
his way through the Davis book in the course of a dozen or so dark and stormy
winter nights (really).

PIKAIA is a GA-based function optimizer, it genetic algorithms were orig-
nally developped in a much broader context, centering on the phenomenon of
edepletion In quite general terms. Anybody serious about using pemetic algo-
rithms for complex optimization tasks shoild make it a peint to work through the
early (and still extremely relevant) hible in the field, namely

Holland, J.H. 1975, Adaptation in Natural and Artificial Systems (Ann Arbor:
The University of Michigan Press; Second Edition 1982, MIT Press).

The following are two more recent monographs alse well worth locking into:

Michalewicz, Z. 1994, Genetic Algorithms + Data Stnictures = Evohition
Programs (New York: Springer).

Back, T. 1996, Evohifionary Algorithms in Theory and Practive {Oxford:
Oxdord University Press).

Be also on the lookout for an introductory text by Melanie Mitchell, to be published
by MIT Press in early 1996. To get a feel for the wide {(and ever-growing) range
of application of genetic algorithm-based optimization, the interested reader may
wish to take a look at chapters § to 22 of Davis's book, and at

Belew, R.K., & Bocker, L.B. {eds.}) 1941, Proceedings of the fourth nter-
national Conference on (enetic Algorithms {(San Mateo: Morgan
Kaufmann), sections ¥I and YIL
In the area of genetic algorithm theory, the following series of conference proceed-
ings pretty nmich covers the current state of the art:

Rawling, G.I.E. 1991 (ed.), Foundations of Genetic Algorithms (San Mateo:
Morgan Kaufmann).

Whitley, L.D. 1993 (ed.), Foundations of Genetic Algorithms 2 (San Mateo:
Morgan Kaufmann).

Rawlins, G.I.E. 1595 {(ed.), Foundations of Genetic Algorithms 3 {San Mateo:
Morgan Kaufmann).

74

Note finally that the journal Evohitionary Computation, edited by K. De Jong and
published quarterly since 1993 by The MIT Press, is dedicated to the publication
of research papers dealing with both theory and applications of genetic algorithms.

7

APPENDIX: SOURCE CODE

A.1 Source code for FIKAIA

The following is a reduced listing of the subroutine PIKATA; It is “reduced” in
the sense that the complete subroutine PIKATA contains many more explanatory
comments lines than the listing given here; all operational lines are included as they
appear in the source code. Note also that in this reduced listing all REAL, INTEGER,
otc, staternents hawve been regrouped independently of their loeal/input/output
statis,

78

subroutine pikaia{ff,n,ctrl,x,f,atatua)
implicit none

real ctrl{12) ,x{n) ,f ,ff

integer n,atatua

external it

Optimization {maximization) of user-supplied functiom ff over
n-dimenaional parameter apace x using a GA-based optimizer.

Paul Charbonneau & Barry Knapp

High Altitude Dbaervatory

National Center for Atmoapheric Reaearch
Boulder CD 80307-3000
<paulcharfhac.ucar.eaedu>
<knappdhao.ucar.edu>

Veraion 1.0 [1895 December 01]

Genetic algorithma {G4) are heuristic search techmiquea that
incorporate in a computational aetting, the bioclogical notion

of evolution by means of nmatural selection. This aubroutine

ias a general purposes GA-based optimizer, incorporating the baaic
Gh operatora of one-point cromaover and mutation, as well aa a
few additional robuat reproductive and ecological atrategiea
known to improve the performance of GA in the context of
function optimization. Parametera defining the function to be
optimized {maximized) are encoded as string of simple decimal
integera [0,8].

Referencea:

Goldberg, David E. Genetic Algorithma in Search, Optimization,
& Machine Learning. Addiacn-Wesley, 1988.

Davia, Lawrence, ed. Handbook of Genetic Algorithma.
Van Nostrand Reinhold, 1831.

n o nN oD n oD NN oo nnnnDaonnnn N nnnnnno

USES: aetctl, £ff, urand, rokpop, aselect, encode, decode, croaa,
mutate, genrep, s8tdrep, newpop, adjmt, report

integer NMAX, PMAX , DMAX

parameter {NMAX = 32, PMAX = 128, DMAX = 8)

integer np, nd, ngen, immt, irep, ielite, ivrb, k, ip, ig,
+ ipl, ip2, new, newtot, gnl{NMAZ+DMAX), gn2{NMAX+DMAZ),
+ ifit{PMAX), jfit{PMAX)

real pcroaa, pmut, pmutmn, pmutmx, fdif, fitna{PMAX),

+ ph{NMAX 2}, oldph{NMAX ,PMAX), newuph{NMAX,PMAX), urand

21

74

external urand
3et control variables from input and defaunlta
call astectl
+ {ctrl,n,np,ngen,nd,pcroas, pmutmn ,pmutmx, pmut , imnt,
+ fdif ,irep,ielite,ivrb,atatua)
if {atatua .me. 0) then
write{#,*) * Control vector {ctrl) argument{s) inwvalid®
return
endif
Make sure locally-dimensioned arrays are big enough
if {n.gt.MMAX .or. np.gt .PMAX .or. nd.gt.DMAX) then
write{+,+)
+ ' Number of parametera, populaticn, or gemea too large®
atatua = -1
return
endif
Compute initial {randcm but bounded) phenctype populaticn
do 1 ip=1,np
do 2 k=1,n
oldph{k,ip)=urand{)
continue
fitna{ip}) = ff{(n,oldph{l,ip))
continue
Rank initial population by fitneaa order
call rnkpop{np,fitna,ifit,jfit)
Main Generation Loop
do 10 ig=1.ngen
Main Population Loop
newtot=0
do 20 ip=1,np/2
1. pick two parenta
call aelect{np,jfit,fdif,ipl)
call amelect{np,jfit,fdif,ip2)
if (ipl.eq.ip2) goto 21
2. encode parent phenotypea
call encode{n,nd,cldph{1l,ipl},gnl)
call encode{n,nd,cldph{1,ip2},gn2)
3. breed
call cross{n,nd,pcroas,gnl,gn2)
call mutate{n,nd,pmt,gnl)
call mutate{n,nd,pmt,gn2)
4. decode offspring genotypea
call decode{n,nd,gnl,ph{i,1))
call decode{n,nd,gn2,ph{1,2))
B. imamert into population
if {irep.eq.1) then

80

call genrep{NMiX ,n,np, ip,ph,newph)

glae
call atdrep{ff NMAX,n,np,irep,iclite,
+ ph,cldph,fitna,ifit,jfit ,new)
newvtot = newtot4new
endif
c End of Main Population Loop
20 continue
c if rumning full generational replacement: avap populationa
if {irep.eq.1)
+ call newpop{ff,ielite,NMAX ,n,np,oldph,neuph,
+ ifit,jfit,fitna,newvtot)
c adjuat mutation rate?
if {imut.eq.2) call adjmut{np,fitna,ifit,pmutmn,pmtnz,pmut)
c print genmeration report to atandard ocutput?
if {ivrb.gt.0) call report
+ {ivrb ,NMAX ,n,np,nd,cldph, fitna,ifit,pmt,ig,nevtot)
c#4¥# Uaer-supplied {optiocmal) cutput routine could go here
c End of Main Generatiom Loop
10 continue
c Return beat phenotype and ita fitneas
do 30 k=1,n

x{k) = ocldph{k,ifit{np))
30 continue
f = fitna{ifit{mp))
end
o LELEELEELLESERLLELLEELE LRI ELELEELER LR ELERELEERELRELEEEREELER ELE L L
subroutine astctl
+ {ctrl,n,np,ngen,nd,pcroas, pmutmn ,pmutmx, pmut , imnt,

+ fdif ,irep,ielite,ivrb,atatua)
implicit none
integer n, np, ngen, nd, immt, irep, ielite, ivrb, atatua
real pcroas, pmutmn, pmutmx, pmut, fdif, ctrl{l2)
[
c Set control variablea and flaga from input and defaunlta
integer i
real DFAULT{12)
2ave DFAULT
data DFAULT /100,500,5,.85,2,.006,.0005,.25,1,1,1,0/
de 1 i=1,12

if {ctrl{i).1t.0.) ctrl{i)=DFAULT{i)
1 continue
np = ctrl{l)
ngen = ctrl{2)
nd = ctrl{3)

pcroaa = ctrl{4)

imut =
pmut =
poutmn
poutmz
fdif =
irep =
ielite
ivrbh =
atatua

ctrl{E)
ctrl{s)
cetrl{7)
ctrl{8)
ctrl{3)
ctrl{10)

= ctrl{il)

ctrl{12)
= [

Print a header
if {ivrb.gt.0) then
write{*,2) ngen,np,n,nd,pcroaa,pmt,pmutmn ,pmutmz,fdif
2 Tormat{/1=,60{+*),/,
* #* 13x,°PIKAIA Genetic Algorithm Report *,13x,*s*,/,
1x,60(*%°),//,

I E

if {immt.eq.2)

3 formatf

&1

Number of Generationa evolving: °*,i4,/,
Individuala per genmeraticm: *,i4,/,
Number of Chromoscme segments: *,i4,/,
Length of Chromosome segmenta: *,i4,/,
Crossover probability: °*,f9.4,/,
Initial mutation rate: *,f9.4,/,
Minimum mutation rate: *,f9.4,/,
Maximum mutation rate: *,£9.4,/,
RBelative fitneas differential: *,f9.4)
if {imut.eq.1) write{+,3) ’Conatant’®
write{+,3) 'Variable®
Mutaticon Mode: *,A)

if {irep.eq.1)
if {irep.eq.2)
if {irep.eq.3)

4 format

+
endif

write{+,4) 'Full generational replacement’
write{+,4) *Steady-state-replace-random’
write{+,4) 'Steady-atate-replace-worat’

Reproduction Plan: ’,A)

Check aome control waluea
if {immt.pne.l1 .and. imut.ne.2) then

write{+,10)
atatua = &
endif

10 format{® ERROR: illegal walue for immut {ctrl{t))?*)
if {fdif.gt.l.) then

write{+,11)
atatua = g
endif

11 format{® ERROR: illegal walue for fdif {ctrl{8))’)

82

if {irep.me.l1 .and. irep.ne.2 .and. irep.me.3) then
write{s,12)
atatua = 10
endif
12 format{® ERROR: illegal walue for irep {ctrl{10))°*)
if {pcroama.gt.1.0 .or. pecrosa.lt.0.) then
write{+,13)
atatua = 4
endif
13 format{® ERROR: illegal walue for pcroasa {ctrl{4))*)
if {ielite.ne.0 .and. ielite.ne.1) then
write{+,14)
atatua = 11
endif
14 format{’® ERROR: illegal walue for ielite {ctrl{11))’)
if {irep.eq.1 .and. imut.eq.1 .and. pmut.gt.0.5 .and.
+ ielite.eq.0) then

write{+,1k)
endif
15 format{® WARNING: dangercualy high value for pmut {ctrl{8));’,
+ /' {Should enforce elitism with ctrl{ii)=1.}*)

if {irep.eq.l1 .and. imut.eq.2 .and. pmutmx.gt.0.5 .and.
+ ielite.eq.0) then

write{+,16)
endif
16 format{® WARNING: dangercualy high value for pmutmx {ctrl{3));’,
+ /' {Should enforce elitism with ctrl{ii)=1.}*)
if {fdif.1t.0.33) then
write{+,17)
endif

16 format{® WARNING: dangercualy low value of fdif {ctrl{S))*)
if {mod{mp,2).gt.0) then
np=np-1
write{+,18) np
endif
18 format{® WARNING: decreasing populaticn mize {ctrl{l)) to np=*,i4)
return
end

M LELEEELELERLERELEELLELLEEELEELELEEEEELELELEEELELLELELEEELELLELELEEEELELL]

subroutine report
+ {ivrb,ndim,n,np,nd,oldph,fitna,ifit,pmt,ig,nnew)
implicit none

integer ifit{np) ,ivrb,ndim,n,np,nd,ig ,nnew

real ocldph{ndim,np) ,fitna{np) ,pmut

Write generation report to atandard output

84

real beatft ,pmitpv
aave beatTt,pmutpv
integer ndpsr Lk
logical rpt
data bestft,pmtpv /0,0/
rpt=.falae.
if {pmut.ne.pmutpv) then
poutpv=pmut
rpt=.trua.
endif

if {fitna{ifit{np)).ne.beatft) then
beatft=Ffitna{ifit{np))
rpt=.true.

endif

if {rpt .or. ivrb.ge.2) then
Power of 10 to make integer genotypea for diaplay
ndpvr = nint{10.*+nd)
write{s,*{/16,16,f10.6,4f10.6)*) ig,nnew,pmut,

+ fitna{ifit{op)), fitna{ifit{mp-1)), fitna{ifit{np/2))
do 15 k=1,n
write(s,’{22x,3i10)*)
+ nint {ndpur+cldph{k,ifit{np))),
+ nint {ndpur+cldph{k,ifit{np-1))),
+ nint {ndpur+cldph{k,ifit {np/2)))
continue
endif
end

M LELEELLELER LR LLELLELLELELLLLELELELELLELLELELLELLELELLER LRI LL)

subroutine encode{n,nd,ph,gn)
implicit none

integer n, nd, gn{n*nd)
real phin)

n n nmn

encode phenotype parametera into integer genotype
ph{k) are z,y coordinates [0 < x,y < 1]

integer ip, 1, j, ii
real z
Z=10. #*nd
ii=0
do 1 i=1,n
ip=int{ph{i)*z)
do 2 j=nd,1,-1
gn{ii+j)=mod{ip,10)

ip=ip/10

84

2 continue
ii=ii+nd

1 continme
return
end

I LA LERLERLESIERLLE LR LR LR LR LEESRESRESSLELLELLELELELRERESREREERLER L)

subroutine decode{n,nd,gn,ph)
implicit none
integer n, nd, gn{n#*nd)
real ph{n)

decode genotype into phenotype parametera
ph{k) are z,y coordinates [0 < x,y < 1]

n o non

integer ip, 1, j, ii
real z
z=10. %% {-nd)
ii=0
do 1 i=1,n
ip=0
do 2 j=1,nd
ip=10#iptgn{ii+j)
2 continue
ph{i)=ip#*=
ii=ii+nd
1 continue
return
end
M LLLILLLELLELLELLELL LI LI LLELELL LI Ll L Ll L Ll Rt il LL)
subroutine crosaf{n,nd,pcroasa,gnl,gn2)
implicit none
integer n, nd, gnl{n*nd), gnZ{n*nd)

real pcrosa
[
c breeda two parent chromoaomea into two offapring chromoaomea
c breeding ocecura through crosacver atarting at poaitiom iapl
™
c USES: urand
integer i, iapl, t
real urand
external urand
c Uae croasover probability to decide whether a croasover occura
if {urand{).lt.pcroaa)} then
c Compute crosaover point

iapl=int {urand {)*n*nd)+1
c 3vap genea at iapl and abowve

1]

do 10 i=iapl,n*nd
t=gn2{i)
gn2{i)=gni{i)
gnl{i)=t
continue
endif
return
end

. LELEEELELEREEELEELLELEEEELEELELEEEEELELEEEEELELLELELEEELELLEEEEEEEEEL L]

subroutine mutate{n,nd ,pmut,gn)
implicit none

integer n, nd, gn{n*nd)
real pmut

Mutationa occur at rate pmmt at all geme loci

nonon N

U2ES: urand
integer i
real urand

external urand
do 10 i=1,n#nd
if {urand{).lt.pmut) then
gn{i)=int{urand{)+10.)
endif

10 comtinue

return
end

. LELEEELELEREEELEELLELEEEELEELELEEEEELELEEEEELELLELELEEELELLEEEEEEEEEL L]

subroutine adjmt{np,fitna,ifit,pmtmn,pmutmx ,pmut)
implicit none

integer np, ifit{np)

real fitna{np), poutmn, pmutmxz, pmut

nonmn o

dynamical adjustment of mutation rate; criteriom ia relative
difference in abaolute fitneasea of best and median individuala

real rdif, rdifle, rdifhi, delta
parameter {rdiflc=0.0&k, rdifhi=0.25, delta=1.5)
rdif=aba {(fitna{ifit{np))-fitna{ifit{np/2)))/
+ {fitna{ifit{np))+fitna{ifit{np/2)))
if{rdif.le.rdiflo)then
pmut=min {pmutm=,pmut *+delta)
glae if {rdif.ge.rdifhi)then
pmut=maz {pmutmn ,pmut /delta)
endif
return

86

end

M LELEEELELERLERELEELLELLEEELEELELEEEEELELELEEELELLELELEEELELLELELEEEELELL]

subroutine aelect{np,jfit,fdif,idad)
implicit none

integer np, jfit{np}, idad

real Idif

Selecta a parent from the populatiom, using roulette wheel
algorithm with the relative fitnesaes of the phenotypea aa
the "hit" probabilities [see Davia 1991, chap. 1].

n o nnn oo

1
2

USES: urand

integer npl, i

real dice, rtfit, urand
npl = np+l

dice = urand{)+np#npl

rtfit = 0.

do 1 i=1,np

rtfit = rtfit+npl+fdif+ {npl-2+jfit{i))
if {rtfit.ge.dice) then
idad=i
goto 2
endif
continue
return
end

M LELEEELELERLERELEELLELLEEELEELELEEEEELELELEEELELLELELEEELELLELELEEEELELL]

subroutine rnkpop{n,arrin,indxz,rank}
implicit none

integer n, indx{n),rank{n}
real arrin{n)
[
c Calla external asort routine to produce key index and rank order
c of input array arrin {which ia not altered).
[
€ USES: rqaort
integer n, indz{n),rank{n}
real arrin{n)
integer i
external rgaort
c###¥ [Jaer-aupplied routine: Compute the key index
call rgacrt{n,arrin,indx)
c ...and the rank order

1

do 1 i=1,n
rank{indx{i}} = n-i+l
continue

87

return
end

. LELEEELELEREEELEELLEEEEELEELELEEEEELELEEEEELELLELELEEEELELLELEEEEEEELL L]

subroutine genrep{ndim,n,np,ip,ph,nevph)
implicit none

integer ndim, n, np, ip

real ph{ndim,2), neuph{ndim,np)

Tull generational replacement: accumulate offapring into new
population array

nonmn o

integer il, i2, k

il=2+ip-1

i2=i1+1

do 1 k=1,n
newph{k,il)=ph{k,1)
newph {k,i2)=ph{k,2)

1 contimme

return
end

M LELEEELELERLERELEELLELLEEELEELELEEEEELELELEEELELLELELEEELELLELELEEEELELL]

subroutine atdrep
+ {ff,ndim.,n,np,irep,ielite,ph,oldph,fitna,ifit,jfit,nnew)
implicit none

integer ndim, n, np, irep, ielite, ifit{mp), jfit{mp), nnew
real ff, phi{ndim,2), oldph{ndim,np), fitna{np)
external ff
[
c ateady-atate reproduction: inaert offapring pair into population
c only if they are fit enough {replace-random if irep=2 or
c replace-worat if irep=3).
[
L USES: ff, urand
integer i, j, k, i1, ifl
real fit, urand
external urand
mew = [
do 1 j=1,2
c 1. compute offaspring fitnesa {with caller’s fitneaa functiom)
fit=ff{(n,ph{1,j)}
c 2. if fit enough, insert in population
do 20 i=np,1,-1
if {(fit.gt .fitna{ifit{i))) then
c make sure the phenctype ia not already in the populaticn

if {i.1lt.np) then
do b k=1_,n

88

if {oldph{k,ifit{i+l)) .ne.ph{k,j)) goto 6
b continue
goto 1
B continue
endif
c offapring is fit encugh for insertiom, and ia unmique
c {i) insert phenctype at appropriate place in population
if {irep.eq.3) then
il=1
elae if {ielite.eq.0 .or. i.eq.np) then
il=int{urand{)#np)+1
elae
il=int{urand{)*{np-1))+1
endif
ifl = ifit{il1)
fitna{ifl)=Ffit
do 21 k=1,n
oldph{k,if1)=ph{k,j)
21 continue
c {ii) shift and update ranking arrays
if {i.1t.il1) then
c ahift up
jEfit{if1)=np-i
do 22 k=il-1,i+i1,-1
jfit{ifit{k))=jfit{ifit{k))-1
ifit{k+1)=ifit{k)
22 continue
ifit{i+1)=if1
elaa
c shift down
jfit{ifi)=np-i+il
do 23 k=il+l,i
jfit{ifit{k))=jfit{ifit{k))+l
ifit{k-1)=ifit{k)
23 continue
ifit{i)=if1
endif
nnew = nnewtl
goto 1
endif
20 continue
1 continue
return
end
M LELLELLELERLL LA LLELLELLELLELEL LR ELELLELLELEEEREERELELELLELLELE)
subroutine newpop

89

+ {ff,ielite,ndim,n,np,oldph,newph,ifit,jfit ,fitna, nnew)
implicit none

integer ndim, np, n, ielite, ifit{np), jfit{np), nnew
raal ff, fitna{np), cldph{ndim,np), newph{ndim,np)
extermal ff
™
c replacea old population by new; recomputes fitnesaea & ranka
[
c USES: ff, rnkpop
integer i, k
nnew = np
c if using elitism, introduce in mew population fitteat of old
c population {if greater than fitnesa of the individual it ia
c to Teplace)
if {ielite.eq.1 .and. ff{n,newph{1,1)).1t.fitna{ifit{np))} then
do 1 k=1,n
newph{k,1)=cldph{k,ifit {np))
continue
nnew = mnew-1
endif
c replace population
do 2 i=1,np
do 3 k=1,n
oldph{k,i)=newphik,i)
continue
c get fitneaa uaing caller’a fitneaa function
fitna{i)=ff{n,oldph{1,i))
continue
c compute new population fitneasa rank order

call rnkpop{np,fitna,ifit,jfit)
return
end

40
A.2 Random mumber generator and ranking subroutine
The following are source code listings for the random number generator and

ranking subroutines provided with PIKAIA's installation package. See §4.6 for
details.

41

function urand{)
implicit none

[
c Return the next paceudo-random dewiate from a aequence which ia
€ uniformly distributed in the interval [0,1]
£
c Uaea the function raml, the "minimal standard" random number
L generator of Park and Miller {Comm. ACM 31, 1182-1201, Dct 1888;
c Comm. ACM 38 No. 7, 105-110, July 1883).
[
real urand, rand
integer iaeced
external ran(
c
c Common block to make imseed viamible to rmninit (and to mave
c it between calla)
common frnased/ imeed
£

urand = ranl{ iaced)}
return
end

M LELELLELLELLERLLELLELLLLLELLLLLELELELELLE LRI LLE L LI LR LR L LR L)

subroutine rninit{ ased)
implicit none

integer asad
[
c Initialize random number generator urand with given ameed
[
integer isead
c Common block to communicate with urand
common /frmased/ imeed
c 3et the aeced walue

iagaed = aeed

if{imeed.le.0) imced=1234R8
return

end

M LELEELLELERLLELLELLELELELLLLLELELELELLE LR LRI LELLELEEERLLELERERLLELLE L)

function ranl{ aced)

mn NN nnQnnn

"Minimal atandard" paeudo-random number generator of Park and
Miller. Returna a uniform random deviate r a.t. 00 <r < 1.0.
Set aced to any mon-zero integer walue to imitialize a aequence,
then do not change aced between calla for succeasive deviatea

in the =aequence.

Referencea:

92

L Park, 3. and Miller, K., "Random Number Generatora: Good Ones
c are Hard to Find", Comm. ACM 31, 1182-1201 {Dct. 1838)
€ Fark, 3. and Miller, K., in "Remarka on Choosing and Imple-
L menting Random Number Generatora", Comm. ACM 36 No. 7,
c 106-110 {July 1983)
[
£ *#* Declaration aection #*#%
implicit none
£ Input /Output:
integer aeced
c Output:
real ranl
c Conatanta:
integer A4,M,0.R
parameter {(A4=48271,M=2147483647, [=44488 R=3399)
real SCALE
parameter {SCALE=1./M)
€ Loeal:
integer j
c
c #+% Executable section #++
c

j = meed/Q

aced = A#{mced-j+Q)-R+j

if {aced .1t. 0) scsed = aced+M
randt = sesd+3CALE

return

end

subroutine rqsort{m,a,p)
implicit none

integer n

raal a{n), p{n)

Return integer array p which indexes array a in increasing order.
Array a ia not disturbed. The Quicksort algorithm ia uaed.

B. G. Knapp, 86/12/23

Reference: N. Wirth, Algorithma and Data Structures,
Prentice-Hall, 1936

nonnmnnnnno

4]

Conatanta
integer LGN, [}
parameter (LGN=32, Q=11)
{LGN = log bame 2 of maximum n;
Q = amalleat subfile to uame guicksort om)
Local :
real x
integer atackl{LGN),stackr{LGN),a.,t,l,m,r,i,]
Initialize the stack
atackl{l)=1
atackr{l)}=n
a=1
Initialize the pointer array
do 1 i=1,n
p{i)=i
continue
if {a.gt.0) then
1=atackl {a)
r=atackr{a)
a=a-1
if {{r-1).1t.Q) then
Use atraight inaertion
do &8 i=1H+1,r
t = p{i)
z a{t)
do 4 j=i-1,1,-1
if {(a{p{j)).le.x) goto &
p{j+1) = p{j)
continme
j=1-1
pij+l) = t
continue
glags

93

Uae quicksort, with pivot aa median of a{l), a{m), a{r)
n={1+1) /2
t=p{m)
if {af{t).lt.a{p{1))) then
pim)=p{1)
p{l)=t
t=p{m}
endif
if {(af{t).gt.a{p{r))) then
p{m)=p{r)
pi{r)=t
t=p{m)
if {af{t).lt.a{p{l))) then
pim)=p{1)
p{l)=t
t=p{m)
endif
gndif
Partition
z=a{t)
i=1+1
j=r-1
if {i.le.j) then
if {af{p{i)).lt.x)} then
i=i+l
goto 8
endif
if (x.1t.a{p{j))) then
=i
goto &
gndif
if {i.le.j) then
t=p{i)
p{i)=p{j)
p{ji=t
i=i+l
=i
gndif
goto ¥
endif
Stack the larger subfile
a=a+l
if {{j-1).gt.{r-i)) then
atackl{a)=1
atackr{a)=j
1=i

glae
atackl{a)=i
atackr{a)=r
r=j
endif
goto 3
endif
goto 2
endif
return
end

95

96

A.3 Driver and fitness function for installation check

The following is a listing of the driver and fitness function for the installation
check test problem. The driver zpkaia seeks to maximize a 2-D funection twod,
a listing of the latter being also provided. This function corresponds to the 2-D
multimodal landscape shown on Fig. 5.1.

g7

program xpkaia

[
c Driver program for the imatallation check of Bectiom 2.3
c
c Thia program performs repeated maximization of a 2-D function
c named two_d, prompting the uaer for a random aced
™
implicit none
integer n, aced, i, atatua
parameter {(n=2)
real ctrl{12), x{n), £, twod
external twod
ce##+ Firat, initialize the random-number generator
c {no other initialization required for this applicatiom)
1 write{s,’{/A$)*) * Random number aced {I#4)7 °*
read{+,+) ameed
call rninit{as=d)
€ S8et control wvariablea {use defaulta)
do 10 i=1,12
ctrl{i) = -1
10 continue
c Now call pikaia
call pikaia{twod,n,ctrl,x,f,atatua)
c Print the reaulta
write{+,+) * atatua: *,statua
write{+,+) °* x: ,x
write{+,s) * f: *,f
write{*,20) ctrl
20 format{ ' ctrl: *,68f11.6/10=x,6f11.6)
goto 1
end
function twod{n,x)}
real z{n)
[
c Compute mample fitneas function {altitude in 2-d landacape)

implicit none

integer n,nn

real pi, sigma2, x{n), rr, twod
parameter {pi=3.1415926536,sigma2=0.15,nn=2)
if {x{1).gt.1..or.x{(2).gt.1.) atop

rr=aqrt{ {(0.5-x{1))#++2+ (0.5-x{2))#+2)
twod=coa {rr+nn#pi) ##2 #exp{-rr++2/aigna2)
return

end

a8
A.4 Drivers for the example problems of chapter &
The following are driver source codes and, when appropriate, initialization

sitbroutine(s), for the example problems of §85.2 (zpkia), 5.3 (xpkib), 5.4 (xpk2),
and 5.5 (xpk3). The corresponding fitness functions are listed In the main text.

99

program xpkla

nn n o

Driver program for linear least-aguares problem
{Sect. 5.2}

n on

nnnn

nnmnamn

20

10

implicit mnome

integer n, aced, i, atatua
parameter {n=2)

real ctrl{i2), ={n), £, fitla
external fitla

Firat, initialize the random-number generator

ased = 1234586
call roninit{aced)

Initializationa

open{l,file="fake.ide’ ,form="unformatted?®)
call finit

Set control wvariablea {evolwe BD individuals over 100
generationa, ume defanlts waluea for cther input parametera)

do 10 i=1,12
ctrl{i) = -1
continue
ctrl{1)=R0
ctrl{2)=100

Now call pikaia
call pikaia{fitla,n,ctrl,x,f,statua)

Print the reaunlta

write{+,#*) * atatua: ’,statua

write{+,+) °* x: ',x

write{+,+) °* f: T

write{*,20) ctrl

format ’ ctrl: *,Af1l1.6/10x ,6f11.6)
end

M LELLELLELERLLELLELLELLELLLLLELELLELLE LRI LLE L LLELERLELLELLE L)

subroutine finit

Reada in aynthetic datamet {aee Figure 5.4)

implicit none

common/data/ £{200) ,t{200),aigma,ndata
dimension 0L200) ,vdum{il)

real f,t,aigma,f0,vdum

integer ndata,i
gpen{l,file="ayndatl.i3e’ ,form="unformatted’)
read{1l) ndata

read{1) {vdum{i),i=1,11)

read{1) {t{i),i=1,ndata)

read{1) {f0{i),i=1,ndata)

read{l) {f{i),i=1,ndata)

aigma=Fh.

return

end

100

101

program xpklb
[
c Driver program for non-linesar leaat-aguarea problem
£ {83ect. 5.3}
[
implicit mnome
integer n, aced, i, atatua
parameter {n=17)
real ctrl{i2), ={n), £, fitlb
external fitlb
c
c Firat, initialize the random-number generator
c
aeed=135L7%
call roninit{aced)
c
c Initializaticna
c
call finit
c
c Set control wariables {ume defaulta except for populatiocn mize)
c
do 10 i=1,12
ctrl{i) = -1
10 continue
ctrl{1)=E0
c Now call pikaia
call pikaia{fitib,n,ctrl,x,f,atatua)
c
c Print the reaulta
write{+,+) * atatua: *,statua
write{+,+) °* x: ,x
write{+,s) * f: *,f

write{*,20) ctrl
20 format(’ ctrl: *,6f11.6/10x,6f11.6)

end
i tEEEELLELEEEEEELELLEEERLLRLLEERESRLLELEEER LLRELELEELLELLEER R LR L)

aubroutine finit

c Reada in aynthetic dataset {(aee Figure 5.4)

implicit none

common/data/ £{200) ,t{200),sigma,ndata,m
dimenaion T0{200) ,vdum{11}

real I,t,f0,vdum,aigma,delt

102

integer ndata,m,i
open{l,file="ayndatl.ide’ ,form="unformatted’)
read{1) ndata

read{l) {vdum{i),i=1,11)

read{1) {t{i),i=1,ndata)

read{1l) {£0{i},i=1,ndata)

read{1) {£f{i},i=1,ndata)

Uae & Fourier modea for the fit

m=h

game error bar for all point
aigma=h.

delt=t{3)-t{1)

return

end

103

program xpk2

Driver program for ellipse fitting problem {Sect. 5.4)

non

nmnnmn

20

10

implicit none

integer n, aced, i, atatua
parameter {n=5)

real ctrl{i2), =z{n), £, fit2
gxternal fit2

Firat, imitialize the random-number generator

ased=654321
call rninit{aeed)

Initializationa
call finit

Set control wvariablea {50 individuala for 200 generationa
under Select-random-delete-worat reproduction plan)

do 10 i=1,12
ctrl{i) = -1
contimue
ctrl{1)=E0
ctrl{2)=200
ctrl{8)=0.0
ctrl{i0)=3
Now call pikaia
call pikaia{fit2,n,ctrl,x,f,atatua)

Print the rsaunlta

write{+*,*) * atatua: ’,atatuas

write{s,*) ? x ',x

write{+,+) ?* f: *,f

write{+,20) ctrl

format{ ' ctrl: *',68f11.6/10x,6f11.6)
end

M LELEEELELEREEELEELLELEEEELEELELEEEEELELEEEEELEELELEEEEELELLE L E L]

aubroutine finit

Reada in aynthetic dataset {aee Figure £.9)

implicit none
common/data/ xdat{200) ,ydat{200),ndata

104

real xdat ,ydat
integer ndata,i
open{l,file="ayndat2.ide’ ,form="unformatted’)
read{1l) ndata
read{1l) {zdat{i),i=1,ndata)
read{1l) {ydat{i),i=1,ndata)
return
end
M PEEEEEEELEREEREEEEEREEELEEEEREREEREERELREREEREEREREEREERELE
function fatan{yy,zx)

c Returna arctangent in full circle

real yy,xzx . fatan,al,pi
data pi/3.1415826538/
al=atan{yy/xx)
if{zx.1t.0.) al=al+pi
if{al.1t.0.) al=2.#pi+al
fatan=al

return

end

program xpk3
[
c Driver program for circle fitting problem uaing
c a robust eatimator based on the Hough tranaform
€ {3ect. 5.5}
[
implicit nome
integer n, ased, i, atatus
parameter {n=2)
real ctrl{12), z{n), £, fit3
external fit3
£
c Firat, initialize the random-number generator
c
seed = 1234h5
call rninit{aced)
c
c Read in aynthetic data
c
call finit
C
c S8et control wvariablea {u=me
c
do 10 i=1,12
ctrl{i) = -1
10 continue
c Now call pikaia
call pikaia{fit3,n,ctrl,x,f,atatua)
c
€ Print the reaulta
write{+,+) * atatua: *,statua
write{+,+) °* x: ,x
write{+,s) * f: *,f
write{*,20) ctrl
20 format(: ctrl: *,6f11.6/10x,6f11.6)

end

M LELEELLELERLEELLELLELLE L LELEEE R L LLEEEELELLELELERELELLELEE L]

subroutine finit

Reada in aynthetic dataset

implicit none

common/data/ xdat{200) ,ydat{200),aigma,ndata
real xdat ,ydat ,aigma

integer ndata,i

open{l,file="ayndat3.ide’ ,form="unformatted’)

105

106

read{1) ndata

read{l) {=dat{i),i=1_,ndata)

read{1) {(ydat{i),i=1,ndata)

Same error eatimate in x and y for all data pointa
aigma=0.05

return

end

107

BIBLIOGRAFPHY

The following are references for work quoted specifically throughout this guide.
An annotated bibliography providing general entry points into the genetic algo-
rithm literature is provided In §8.4.

Ballard, D.H., & Brown, C.M. 1982, Computer Vision {(Englewood Cliffs:
Prentice-Hall), chap. 4

Beasley, D., Bull, D.R., & Martin, R.K. 1694, Evolutionary Comp., 1, 101

Bevington, P.R., & Robinson, D.K. 1§62, Data Reduction and Error Analysis
for the physical Sciences (New York: MeGraw-Hill)

Boggs, P.T., Byrd, R.H., & Schnabel, R.B. 1987, STAM I. Sci. Stat. Comput.,
8, 1052

Boggs, P.T., Donaldson, J.R., Byrd, R.H., & Schnabel, R.B. 198§, ACM
Trans. Math. Software, 15, 348

Bowler, P.J. 1983, Evohition (Berkeley: University of California Press; revised
edition 1989)

Cedefio, W., Vemuri, V.R., & Slezak, T. 1894, Evolutionary Comp., 2, 321

Cox, M.G., & Jones, H.M. 1989, IMA J. Numer. Anal., 9, 285

Craig, L1.D., & Brown, I.C. 1686, Inverse Problems in Astronomy

Darwin, (. 1859, {n the Origin of Species by Means of nafwral Selection, or
the Preservation of favmired Races in the Stniggle for Life {London:
J. Murray)

Davis, L. 1991, Handbook of Genetic Algorithms (New York: Van Nostrand
Reinhold)

De Jong, K.A. 1993, in Foundations of Genetic Algorithms 2, ed. L.D. Whitley
{Ban Mateo: Morgan Kaufmann), §

Goldberg, D.E. 1980, Genetic Algorithms in Search, (ptimization & Machine
Learning (Reading: Addison-Wesley)

Golub, G.H., & van Loan, C.F. 1989, Matrix Computations, (Baltimore: The
Johns Hopkins University Press; second edition)

108

Gould, 5.J. 1980, Wonderhd Life. The Birgess Shale and the Nafure of
History (New York: W.W. Norton & Company)

Hoare, C.AR. 1962, Comp. I., 5 (No. 1), 10.

Holland, J.H. 1975, Adaptation in Natural and Artificial Systems (Ann Arbor:
The University of Michigan Press)

Holland, J.H. 1992, Adaptation in Nabural and Artificial Systems, Second
Edition {Cambridge: MIT Press)

Horn, JI., Goldberg, D.E., & Deb, K. 1994, Evolutionary Comp., 2, 37

Koza, I.R. 1892, {enefic Programming: on the programming of compifers
by means of natwral selection {Cambridge: MIT Press)

Moura, L., & Kitney, R. 1§91, Comp. Phys. Comm., 4, 57

Maynard Smith, J. 1988, Evohitionary Genetics (Ondord: Oxford University
Press)

Michalewicz, Z. 1994, Genetic Algorithms + Data Stnictures = Evohition
Programs (New York: Springer)

Nelder, J.A., & Mead, R. 1985, Computer JI., 7, 308

Park, 5. K., & Miller, K. W. 1988, Comm. of the ACM, 31, 1192

Park, 5. K., Miller, K. W., & Stockmeyer, P. K. 1893, Comm. of the ACM,
36 (Neo. 7), 108

Press, W.H., Teukolsky, 5.A., Vetterling, W.T., & Flannery, B.P. 1992, Nu-
merical Recipes, Second Edition {Cambridge: Cambridge University
Pross)

Sambridge, M., & Drijkonigen, G. 1992, Geophys. I. Int. 10§, 323

Sen, M.K., & Stoffa, P.L. 1992, Geophys. J. Int. 108, 281

Syswerda, G. 1991, in Foundations of Genetic Alporithms, ed. G.J.E. Rawlins
{San Mateo: Morgan Kaufmann), 94

Tomezyk, 5., Charbonneau, P., Schow, J., and Thompson, M.J. 1945, in 4th
SOHO Workshop: Helioseismology, ESA Publication SP-375, (T.
Hoeksema, ed.), 271

Wilson, W.G., & Vasudevan, K. 1441, Geophys. Res. Lett. 18, 2181

Wirth, N. 1688, Alporithms and Data Struchires (Englewood Cliffs, NI:
Prentice-Hall)

Wright, A.H. 1991, in Foumdations of Genetic Algorithms, ed. G.J.E. Rawlins
{San Mates: Morgan Kaufmann), 205

104

POSTFACE: PIKAILA AND pikeic

As this user’s guide draws to a close one question may well remain on the mind
of the reader: what the &% #G is a “pikaia” anyway ¥ The PIKATA described in
these pages is a rather modest (GA-based optimizer, as compared to a number of
other genetic algorithm paclages awailable commercially or in the public domain.
Likewise, Pikein gracilens, a little fattened worm-like beast some five contimeters
long, crawling in the nmd of a long gone seafloor 530 million years ago at the dawn
of the Cambrian era, must have looked pretty insipnificant compared to some of
its contemporaries. Yet it is now believed by some paleontologists that Pikein
may well be a (if not “the”) founder of the phylum Chordete, which met with
a rather remarkable degree of success in the subsequent half billion years {e.g.,
Gould 1988). It would hardly be reasonable to hope for such a spectacular fate
here. Nevertheless, if PIKATA can help getting some real science done, or ends up
serving as Beuplen for more serious undertakings, then the efforts and oceasional
frustrations having led to its existence will ind themselves largely rewarded. Have
fun.

