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Outline of Talk

• Technical Approach
• Predicting Contaminants in 

Streams and Stormwater Outfalls
• Verification Results
• Summary and Lessons Learned

Main Points:
–Partnering 
–Feedback between Monitoring and 

Modeling
–Science to Inform Decision Making

• How is your work or findings relevant 
to designing the regional monitoring 
strategy -- what lessons can you 
share?  

• What are some key principals for 
success?  

• Pitfalls to avoid??
• What are appropriate scales to work 

at and how can we best transfer study 
findings from one location to another?



Predicting FC Loads from Watershed

The watershed scale is 
the appropriate scale to 
address problems and 
engage stakeholders
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Cooperative Storm Event Monitoring

Cooperating with Cities 
and Kitsap County to:

• Sample representative 
storm events

• Collect data on 
hydrology and water 
quality parameters

• Relate landuse to 
environmental quality

• Quantify loading from 
the watershed into the 
receiving waters of the 
Inlet 

• Support TMDLs



Sampled:

Increasing Development

n = 16:68 Streams and 18:87 Stormwater Outfalls
ranging from 2 to 9,634 acres

Total Impervious Area (TIA)



Stream Monitoring



Sampled Streams in Relation to 
All Streams

n = 16:68 Units
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Storm Water Flow Monitoring



Storm Water Flow Monitoring Cont.



Sampled Stormwater Outfalls 
in Relation to All Outfalls
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Storm Event Sampling





Storm Event Sampling



  g



Mar 2003)



Integrated 
Modeling

Stream
Storm water
Shoreline runoff
Wastewater Treatment Plant (WWTP)

Inputs

HSPF

The integrated watershed 
(HSPF) and receiving water 
(CH3D-FC) models all 
inputs.

Current Configuration:
39 Streams
50 Stormwater Outfalls
44 Shoreline Drainages

4 Treatment Plants
---
137 Separate Inputs



Example Model Simulation

October 2004 Storm Event

2 inches of rain



Meanwhile, Back at the LabAnalytes for Storm Event Sampling:
In situ

Temp, pH, conductivity, turbidity
Conventional Parameters

Alkaninty, TS, TSS, grain size, TOC, DOC
Nutrients – NO3 + NO2, NH3, TN, TP
Metals

Total - Al, As, Cd, Cr, Cu, Pb, Hg, Ag, Zn
Dissolved – Cd, Cu, Pb, Ag, Zn

Polycyclic Aromatic Hydrocarbons (PAHs)
15 (parent) PAH compounds

Phthalates – 3 compounds
Polychlorinated Biphenyls (PCBs)

20 congeners and Aroclor 1268
Pesticides – Chlorinated, Organo-Phosphorous,

and Nitrogen-based (106 compounds)
Herbicides – 24 compounds
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Compositing and Analysis

Storm Event Mean 
Composites (EMCs):

Storm Drains = Flow Weighted

Streams = Equal Weighted

Grabs = Average of Grabs



Types of Samples

• Dry Season Base Flow (DSBF)
• Wet Season Base Flow (WSBF)
• Small Storms (rain < 0.5 in.)
• Medium Storms (0.5 ≤ rain < 1 in.)
• Medium Large Storms (1 ≤ rain < 2 in.)
• Large Storms ≥ 2 in.



Wet Season Base Flow (WSBF)

• 6 Streams sampled following large storm.
• Baseflow defined as >72 hours following 

storm.
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Median EMCs for Cu in 
Outfalls
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Relationship Between EMC and Storm 
Characteristics

For all storm samples, n = 64 to 85
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Loading Function for Copper

Low Development
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Loading Analysis for Urban Stormwater

Urban Stormwater
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2008 Sampling:

1 Small Storm 
(0.13 inch.)

 1 Med. Storm 
(0.51 inch.) 

City of 
Bainbridge 

Island 
Study 



Total Copper in Streams

Level of Development and Storm Size



Total Lead in Streams

MDL

Level of Development and Storm Size



Total Zinc in Streams

Level of Development and Storm Size



Total Copper in the Outfall

Storm Size



Total Lead in the Outfall

Storm Size
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Total Zinc in the Outfall

Storm Size



Biota Sampling

Bottom fish trawl in 
Sinclair Inlet. 

Mussel cage configuration.

Bottom Fish Sampling Caged Mussel Study



Caged Mussels
Indigenous Mussels
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Lessons Learned



What are appropriate scales to work at 
and how can we best transfer study 

findings from one location to another?

• Watershed Scale
–Basis for Partnering

• Sub-Watershed Basins are the 
Experimental Units
–Provides for Replication Across the 
Region

• Pool resources and data to get a better 
product.

• Much better chance for successful 
implementation.



What are some key principals for 
success?  

• Integration
Modelers ↔ Monitors
Terrestrial ↔ Nearshore ↔ Marine

• Clear goals and achievable objectives
• Rational decision making process
• Incorporate stakeholder interests
• Draw on the strengths and contributions 

of all partners
• Communicate early and often
• Allow all partners to benefit



Pitfalls to avoid??

• Don’t be freaked out by cost!
–Incremental Funding

• Don’t try to do too much
–Focus on key objectives

• Don’t fight Mother Nature
–Work with what you have

• Be Flexible
–Plan, Adjust, Improvise



Conclusions
• An empirically-based model of water 

quality as a function of LULC and the 
amount of rainfall within 24 hours

• Predicted loading concentrations were 
within a factor of 2 

• Apply to other areas of Puget Sound.
A comparable LULC classification
Ambient level MDLs and appropriate 

collection methods
Additional data needed for high 

density urban and agricultural areas.



Clambake for ENVVEST Technical Workshop 
provided by the Suquamish Tribe (May 2004)

For More Information:
Google Search: Sinclair/Dyes

Main Points:
–Partnering 
–Feedback between Monitoring 

and Modeling
–Science to Inform Decision 

Making
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