
General TFS Guidelines – V2.1.2

Part 1 – TFS 2010 Source Control Setting Guidelines P2-P6

Part 2 – Team project structure P7-P8

Part 3 – Branching and Merging P9

Part 4 – Storing project document. P9

Part 1 - Team Foundation Server-2010 Source Control Setting Guidelines
General Information: Using the TFS as a source-code control without knowing the true

meaning of the TFS project portal settings can lead to confusion, version conflicting,

especially when there are multiple developers working on the same project. There are

four TFS source-code control options. This document explains the two most common

options that can be used depending on the nature of the development team and their

projects.

The TFS default setting is “Enable multiple check out”. This setting can be changed

by anyone who has access to the project. To change the setting, select Team Explorer,

right click on the Project name,Team Project Setting then Source Control (see the below

figures). The project lead should be the only one to change this setting.

1. The TFS default setting: Enable multiple check out

Each time the developer adds a new item, The TFS also checks out the project solution

file (.csproj). This top level xml file is the one that keeps track and manages all items in

the project. Other developers can also add new items and the projects solution is also

checked out to them. Each developer will not see the new items or folders that were

added by the others. The developers only see these items when they checked them in

and performed the Get Latest Version.

This setting allows multiple developers to check-in the same item back into TFS.

Whoever checks-in last, the TFS will prompt a message to reconcile the conflicting

changes that were made by the previous developer.

Example: Developer A and B perform the Get Latest Version for project TestMeTFS.

Neither developer has checked out any items from their solution yet.

 Developer A adds a new item Class1.CS : Visual Studio checks out the project file

TestMeTFS.csproj. (see figure 1)

 Developer B adds a new item EmployeeForm.aspx: Visual Studio also checks out the

project file TestMeTFS.csproj for this developer.

 Developer A checks in the new item Class1.CS and TestMeTFS.csproj project file

back into TFS: Everything checks-in fine.

 Developer B checks in the new item EmployeeForm.aspx and TestMeTFS.csproj

project file back into TFS: Visual Studio prompts the Developer B to reconcile the

TestMeTFS.csproj project file. (see the figure 2)

Figure 1: added a new item, VS checked out the project file.

Figure 2 - Project Solution file conflict needs to resolve

2. Disable “multiple check-outs.” Enable “get latest on check out.”

This option prevents developers from checking out the same item. The developers will

not have to go through the reconciling process to solve conflicting changes. However,

each time there is a new item added to the project, the TFS also checks the solution file

out. The Visual Studio uses this file to manage all the items within the project. By

checking out this solution file, the TFS prevents other developers from adding new items.

To avoid this obstacle, all developers should check-in the solution file right after adding

the new items.

Note: When there is a new item added by one developer even if it is already checked-in,

other developers will not see it until they close the project and open it again or perform

the Get Latest Version.

Example: Developer A and B perform the Get Latest Version for project TestMeTFS.

Neither developer has checked out any items from their solution yet.

 Developer A adds a new item Class1.CS : Visual Studio checks out the project file

TestMeTFS.csproj and adds a new item Class1.CS (see figure 3)

 Developer B performs “add a new item” WebForm5.aspx: Visual Studio displays

the locked message (see figure 4).

 Developer A checks in the TestMeTFS.csproj project file.

 Developer B performs “add a new item” again for WebForm5.aspx: Visual Studio

checks out the project file TestMeTFS.csproj and allows WebForm5.aspx file to be

added to the project.

 Figure 3: added a new item, VS checked out the project file.

 Figure 4: Locked message preventing new item from added.

Guidelines:
Use Enable multiple check out if the project team is comfortable with resolving

conflicts for the project solution file and team members are unlikely to be working on the

same item. Team leaders should establish:

 A routine TFS check-in schedule

 Rules for which items/folders are required to be checked-in regularly

 Schedule for developers to perform the “Get latest version” in order to have a full

picture of the project.

Use Disable multiple check out / enable Get Latest Version if team members can

check-in the project file each time they add new items, otherwise other team members

will not able to create new items. To avoid the burden of checking-in the project file all

the time, the team lead can add a set of folders and empty items as a holding place to

work on later then check-in the project file.

Part 2 - TFS - Team project Structure Guideline –Adoption Date: 09/14/2008

This guideline is based on Microsoft book: Patterns & Practices - Team Development

with Visual Studio Team Foundation Server. This book can be found at:

http://teams/sites/AS/it/SAT/Helpful%20Reading/TFSGuide.pdf *

The developers should read this book prior using the TFS. This book will serve as

guidelines for items not addressing in this document. On page 23 to 35, it is addressing

the project structure and we encourage all TFS users read at least these pages.

Server-Side Structure for TFS (TFS Server): After /Main/Source folder, the sub

folders are optional depending on the size and nature of the project.

$ PName.TeamProjectName (e.g. $ADS.SoftCenter or $TCP.MYEIM)

/Main  can contain solution .sln files

 /Source  can contain 1 to many apps related to the Team-Project)

 /AppName1  contains AppName1 .sln file

 /Source  contains folder for all source

 /AppName.Web*  contains Default.aspx

 / AppName.ClassLib1*  ClassLib1 project

 (ClassLib1 = DataAccess, Business..etc.)

 …

 /UnitTests

 / AppName.WebTest  Test project and codes

 / AppName.ClassLib1Test  Test project and codes

 /AppName2

 …

 /DatabaseCode

 /BuildScripts

 /ChangeScripts

 …

 /SharedBinaries  Shared binaries e.g. libraries

 /SharedSource  Shared Source Code

 /VendorTools  3
rd

 parties components or codes

 …

 /Build  Build output for deployment

 /Documents  Production documentation

 /BuildScripts  build scripts

 /Tests

 /FunctionalTests

 /PerformanceTests

* Please review the C# naming guideline

http://teams/sites/AS/it/SAT/Helpful%20Reading/TFSGuide.pdf
http://aww.ecology.ecy.wa.lcl/services/ads/standards/agencyapp/CSharpNamingGuidelines.doc

Client-Side Structure (Developers’ PC)

Each development workstations should have one root directory to contain all Team

projects as in this example:

C:\DevProjects  Root folder for all team projects

 \ PName.TeamProjectName1  Container folder for TeamProject 1

 \ PName .TeamProjectName2  Container folder for TeamProject 2

Beneath each team project folder, use a copy of the application folder structure used on

the source control server.

\PName.TeamProjectName1

/Main  can contain solution .sln files

 /Source  can contain 1 to many apps related to the Team-Project)

 /AppName1  contains AppName1 .sln file

 /Source  contains folder for all source

 /AppName.Web*  contains Default.aspx

 /AppName.ClassLib1*  ClassLib1 project

 (ClassLib1 = DataAccess, Business..etc.)

 …

 /UnitTests

 /AppName.WebTest  Test project and codes

 /AppName.ClassLib1Test  Test project and codes

 /AppName2

 …

 /DatabaseCode

 /BuildScripts

 /ChangeScripts

 …

 /SharedBinaries  Shared binaries e.g. libraries

 /SharedSource  Shared Source Code

 /VendorTools  3
rd

 parties components or codes

 …

 /Build  Build output for deployment

 /Docs  Production documentation

 /BuildScripts  build scripts

 /Tests

 /FunctionalTests

 /PerformanceTests

* Please review the C# naming guideline

http://aww.ecology.ecy.wa.lcl/services/ads/standards/agencyapp/CSharpNamingGuidelines.doc

Part 3 – Branching and Merging (per MS guidance)

Do not branch unless it becomes necessary for your development team. Branching

introduces additional source tree maintenance and merging tasks. Most development

teams such as those building line of business applications, working on short release

cycles do not need to branch. Development teams working on longer release cycles are

more likely to need branching as part of the development process.

If you have one stream of development, or are performing incremental and continuous

releases, you might not need to create branches unless you frequently experience

breaking changes that are destabilizing your development efforts.

Before branching, developers need to read page 40 for setting up Branching and page 45

to 53 on chapter Defining Your Branching and Merging Strategy from this TFS

Microsoft Best Practices.* For folder and element naming standard, the sample in the

previous chapter is applied for project, application and package name.

Part 4 - Storing Documents (per MS guidance)

The Docs folder is for product related documentation. To help determine what

documents to store in TFS source control and what to store in a document library on your

SharePoint team site, consider the following:

 Use SharePoint for internal team documents such as use cases, scenario and

requirements documentation, and design documentation.

 Use TFS source control for product-related documentation that you ship to your

customers. This could include installation and deployment guides, operation

guides, and help files.

 Link is available for Ecology intranet only

http://teams/sites/AS/it/SAT/Helpful%20Reading/TFSGuide.pdf
http://teams/sites/AS/it/SAT/Helpful%20Reading/TFSGuide.pdf

Document History

Date Version Editor Change

June 29, 2007 Pilot Son Tran Part 2 and Part 4
-Reviewed by WR (Jeremiah), TCP(Wayne),
ADS(Balaji, Son, Randy)
- Adopted to use as pilot

8/25/2008
9/02/2008
9/14/2008

1.0

Son Tran Part 2 and Part 4
- Review by Strategic Architecture team
-Review by Architecture Work Group
-Approved to release by Enterprise Manager
(Debbie Stewart)

12/23/2010 2.0 Son Tran Insert Part 1

10/04/2011 2.1 Son Tran Insert Part 3 and reformat the document

